svm分割图像怎么加入hog特征、颜色特征代码
时间: 2023-12-28 22:05:06 浏览: 75
以下是使用Python和OpenCV实现将HOG特征和颜色特征加入SVM进行图像分割的示例代码:
```python
import cv2
import numpy as np
# 提取图像的HOG特征和颜色特征
def get_features(image):
hog = cv2.HOGDescriptor()
hog_features = hog.compute(image)
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256])
color_features = cv2.normalize(color_hist, color_hist).flatten()
return np.concatenate((hog_features, color_features))
# 加载训练数据集
train_data = []
train_labels = []
for i in range(num_samples):
image = cv2.imread('image_'+str(i)+'.jpg')
features = get_features(image)
train_data.append(features)
train_labels.append(labels[i])
# 训练SVM模型
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels))
# 对测试图像进行分类
test_image = cv2.imread('test_image.jpg')
test_features = get_features(test_image)
result = svm.predict(test_features.reshape(1,-1))
# 显示分割结果
result_image = np.zeros(test_image.shape[:2], np.uint8)
for i in range(test_image.shape[0]):
for j in range(test_image.shape[1]):
if result[i,j] == 1:
result_image[i,j] = 255
cv2.imshow('Result', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上述示例代码中,我们通过get_features函数提取图像的HOG特征和颜色特征,并将其拼接成一个特征向量。然后,我们使用cv2.ml.SVM_create函数创建SVM分类器,并使用svm.train函数对训练数据集进行训练,得到训练好的模型。对于测试图像,我们同样使用get_features函数提取其特征,并使用svm.predict函数对其进行分类。最后,我们将分类结果可视化,并通过cv2.imshow函数显示出来。
阅读全文