model = tf.keras.models.Sequential
时间: 2024-04-28 11:16:18 浏览: 179
Keras中的两种模型:Sequential和Model用法
5星 · 资源好评率100%
tf.keras.models.Sequential是TensorFlow中的一个模型类,用于构建顺序模型(Sequential Model)。顺序模型是一种简单的神经网络模型,它由一系列层(layers)按照顺序堆叠而成。
在创建Sequential模型时,可以通过添加不同类型的层来定义模型的结构。常用的层包括全连接层(Dense)、卷积层(Conv2D)、池化层(MaxPooling2D)等。这些层可以通过调用Sequential类的add方法逐个添加到模型中。
例如,下面是一个简单的Sequential模型的创建示例:
```python
import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
```
上述代码创建了一个包含两个隐藏层和一个输出层的神经网络模型。第一个隐藏层有64个神经元,激活函数为ReLU;第二个隐藏层也有64个神经元,同样使用ReLU作为激活函数;输出层有10个神经元,激活函数为Softmax。
阅读全文