stm32标准库的高级定时器死区函数

时间: 2023-07-30 18:13:00 浏览: 130

STM32标准库提供了高级定时器(TIM1 和 TIM8)的死区控制功能,可以通过相关函数来实现。

死区控制的主要目的是为了避免电机等设备在反转时出现瞬间短路,从而保护电机和电源。死区时间是指在定时器输出通道切换时,两个输出引脚之间的时间差,可以通过死区控制功能来设置。

下面是几个常用的 STM32 标准库函数:

  1. TIM_BDTRConfig():用于配置定时器的高级控制寄存器(BDTR),其中包括死区时间的设置。

  2. TIM_CCPreloadControl():用于控制定时器输出比较通道的预装载功能,可以选择是否在更新事件时加载新的比较值。

  3. TIM_OCxPreloadConfig():用于配置定时器输出比较通道x的预装载功能,其中 x 可指定为 1、2、3 或 4。

  4. TIM_SetComparex():用于设置定时器输出比较通道x的比较值,其中 x 可指定为 1、2、3 或 4。

  5. TIM_DMABurstLengthConfig():用于配置 DMA 传输的突发长度,可以控制 DMA 一次传输的数据量。

使用这些函数,可以很方便地实现 STM32 高级定时器的死区控制功能。需要注意的是,死区时间的设置需要根据具体应用来确定,过长或过短都可能会产生不良后果。

相关问题

STm32标准库配置定时器time2触发定时器time3,使两定时器输出的pwm相位差60°

在STM32标准库中,你可以通过设置定时器的工作模式和分频系数来实现这样的功能。假设我们使用的是TIM2和TIM3这两个通用定时器。为了让它们输出的PWM信号相位差60°,你需要按照以下步骤操作:

  1. 初始化定时器 TIM2

    • 首先,你需要初始化TIM2并选择适当的计数器模式(例如,如果需要PWM,可以选择CCM mode)。配置预分频器(PSC),基本定时器周期(ARR),以及子定时器的定值(例如,用于生成60°相位差)。
      TIM_TimeBaseInitTypeDef.TIM_TimeBaseStructure;
      // ...其他初始化变量...
      TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / (16 * desired_PWM_frequency)) - 1; // 根据系统频率计算PSC
      TIM_TimeBaseStructure.TIM_Period = calculate_TIM2_period_for_60_degrees; // 计算ARR值
      TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
      
  2. 配置TIM2的通道作为PWM输出

    • 设置TIM2的输出通道为PWM模式,并配置相应的占空比(Duty Cycle)寄存器。
      TIM_OCInitTypeDef TIM_OCInitStructure;
      TIM_OCInitStructure.TIM_OCMode = TIM_OCMODE_PWM1; // 输出模式1为上升沿 PWM
      TIM_OCInitStructure.TIM_OutputState = TIM_OUTPUTSTATE_ENABLE; // 启动输出
      TIM_OCInitStructure.TIM_Pin = TIM_PIN_XXX; // 替换为你想要输出PWM的GPIO引脚
      TIM_OCInit(TIM2, TIM_CHANNEL_1, &TIM_OCInitStructure); // TIM_CHANNEL_1表示第一个输出通道
      
  3. 初始化定时器 TIM3

    • 类似地,你需要对TIM3进行相同的初始化步骤,但是可能需要调整计数器的定值和预分频器以获得与TIM2相匹配的60°相位差。
  4. 设置TIM3的延时启动(Dead Time)

    • 如果需要,可以设置TIM3有一个死区时间,使得两个PWM信号之间的切换不会同时发生,这有助于减少噪声。
      TIM_DeadTimeConfig(TIM3, enable_or_disable DeadTime); // 根据需要启用或禁用死区时间
      
  5. 启动定时器

    • 最后,启动TIM2和TIM3的计时器。
      TIM_Cmd(TIM2, ENABLE);
      TIM_Cmd(TIM3, ENABLE);
      

注意,这里的代码示例简化了实际应用中可能会遇到的一些细节,比如错误处理、时钟源选择等。具体的实现会依赖于你所使用的STM32系列型号及其固件库的具体函数。记得根据你的项目需求和硬件配置调整相应参数。如果你有特定的STM32型号,查阅官方文档会有更详细的指导。

stm32h743高级定时器

STM32H743 高级定时器功能及使用教程

1. 高级定时器概述

高级控制定时器(如 TIM1 和 TIM8)是 STM32 微控制器中的重要外设之一。这些定时器具有复杂的结构和丰富的功能,适用于多种应用场景,例如测量输入信号的脉冲宽度或生成输出波形[^2]。

2. 定时器的主要组成部分

高级控制定时器的核心组件包括一个 16 位自动装载计数器和一个可编程预分频器。通过配置这两个部分,可以灵活调整脉冲宽度和波形周期,范围可以从几微秒到几毫秒。

3. 主要功能详解

以下是高级定时器的一些主要功能及其应用:

(1) 输入捕获模式

此模式用于测量外部信号的频率或占空比。通过设置捕获/比较寄存器,可以在特定事件发生时记录当前计数值。这种功能对于实时监测外部信号非常有用。

(2) 输出比较模式

在此模式下,当计数器值与捕获/比较寄存器匹配时,会触发相应的动作(如置位、清除或切换 I/O 引脚状态)。这是实现精确延迟或同步操作的基础[^1]。

(3) PWM 波形生成

高级定时器支持标准 PWM 和带死区时间的互补 PWM 输出。这对于电机控制或其他需要高精度调制的应用场景尤为重要。

// 配置 PWM 输出示例代码
void configure_pwm_output(TIM_HandleTypeDef *htim, uint32_t channel, uint32_t duty_cycle_percent) {
    __HAL_TIM_SET_COMPARE(htim, channel, (uint32_t)((float)duty_cycle_percent / 100.0f * htim->Init.Period));
}
(4) 中断处理

高级定时器可以通过配置中断源(如更新中断、捕获/比较中断),在指定条件满足时通知 CPU 执行相应任务。这有助于减少主程序负担并提高响应速度。

4. 实际配置流程

以 STM32H743 的 TIM1 为例,说明如何初始化一个简单的定时器中断功能:

  1. 使能时钟
    使用 __HAL_RCC_TIM1_CLK_ENABLE() 函数启用 TIM1 外设时钟。

  2. 定义参数结构体
    创建 TIM_Base_InitTypeDef 类型变量,并填充所需字段(如 Prescaler、CounterMode 等)[^3]。

  3. 初始化硬件资源
    调用 HAL 库函数 HAL_TIM_Base_Init(&htim) 来完成实际初始化过程。

  4. 启动定时器
    借助 HAL_TIM_Base_Start_IT(&htim) 开启基于 IT 的运行方式。

// 初始化 TIM1 示例代码
TIM_HandleTypeDef htim1;

void init_tim1(void) {
    TIM_ClockConfigTypeDef sClockSourceConfig = {0};
    TIM_MasterConfigTypeDef sMasterConfig = {0};

    htim1.Instance = TIM1;
    htim1.Init.Prescaler = 839;       // 设置预分频系数
    htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
    htim1.Init.Period = 9999;        // 自动重载值
    htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    HAL_TIM_Base_Init(&htim1);

    sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
    HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);

    sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
    HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
}

// 启动定时器中断
void start_timer_interrupt(void) {
    HAL_TIM_Base_Start_IT(&htim1);
}

5. 总结

通过对 STM32H743 高级定时器的学习,可以发现其强大的功能覆盖了从简单延时到复杂波形生成等多个领域。合理利用这些特性将极大提升项目性能和开发效率。


向AI提问 loading 发送消息图标

相关推荐

大家在看

recommend-type

UCF_50 人群密度估计数据集

这里面是UCF的人群密度数据集,适合做人群密度估计这方面的算法研究
recommend-type

《数据库原理与应用》大作业.zip

数据库,酒店点菜管理系统
recommend-type

Lumia-WoA-Installer:用于在Lumia 950 XL的ARM上安装Windows的GUI工具

Lumia Windows 10 ARM64安装程序 这是用于在Windows上为Lumia 950 XL安装Windows On ARM的GUI工具 要求 具有未锁定引导加载程序的Lumia 950 XL,可以正确进入大容量存储模式 Windows 10 ARM64映像(.wim) USB-C电缆 驱动程序包(您可以从 下载) 导入驱动程序包 运行WoA安装程序,然后转到“高级”部分。 单击[Import Driver Pacakge]然后直接选择.7z文件。 不要尝试解压缩它。 导入操作后,您将能够使用该应用程序。 用法 该应用程序非常易于使用。 请注意以下几点: 如果要安装Windows,请转到“ Windows部署”部分,然后选择“ Full Install或“ Windows-only Install 不要忘记切换到大容量存储模式来执行操作 欢迎捐款! 如果您觉得这很有用
recommend-type

六自由度Stewart平台的matlab模拟与仿真【包括程序操作视频】

1.版本:matlab2022A,包含仿真操作录像,中文注释,操作录像使用windows media player播放。 2.领域:Stewart平台 3.仿真效果:仿真效果可以参考博客同名文章《六自由度Stewart平台的matlab模拟与仿真》 4.内容:六自由度Stewart平台的matlab模拟与仿真。六自由度Stewart平台通过独立调整六根作动筒的长度(即活塞杆伸出量),能够实现上平台相对于下平台在三维空间中的平移(沿X、Y、Z轴的直线移动)以及绕三个正交轴的旋转(俯仰、偏航、滚转)。这种并联机构的设计使得平台能够在六个自由度上同时进行精确、快速且平稳的运动控制。 5.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

基于CPLD的数字移相分频钟.pdf

基于CPLD的数字移相分频钟.pdf基于CPLD的数字移相分频钟.pdf

最新推荐

recommend-type

STM32驱动无刷电机的相关定时器配置

STM32驱动无刷电机的过程中,定时器配置是至关重要的环节。无刷电机通常采用三相六步控制,通过精确的时序切换控制电机的旋转。在这个过程中,STM32的定时器扮演着时间基准和脉宽调制(PWM)信号生成的角色。 首先...
recommend-type

ab-ch60.apk

ab-ch60.apk
recommend-type

深入解析网络原理RFC文档全集

网络原理RFC文档详解的知识点可以分为以下几部分: ### 1. 网络协议基础 网络协议是计算机网络中进行数据交换而建立的规则、标准或约定。在网络原理的学习中,协议是非常重要的部分。RFC文档(Request For Comments,请求评论)是由互联网工程任务组(IETF)发布的一系列备忘录,记录了各种互联网协议的设计、行为、研究和创新。了解RFC文档可以帮助我们更深入地理解网络原理,比如IP、TCP、UDP等常见协议的工作机制。 ### 2. RFC文档的结构和内容 RFC文档通常包括标题、状态(标准、草案等)、日期、作者、摘要、目录、正文和参考文献等部分。文档详细解释了协议的各个方面,包括协议的设计目标、数据格式、状态机、操作过程、安全性考虑等。对于网络工程师和开发者而言,RFC文档是学习和开发网络应用的重要参考资料。 ### 3. 网络协议族和RFC 网络协议按照功能和层次可以分为不同的协议族,例如TCP/IP协议族。RFC文档涵盖了这一协议族中几乎所有的协议,包括但不限于以下内容: #### 3.1 网络层协议 - **IP协议(RFC 791)**:定义了互联网中数据包的格式和路由方式。 - **ICMP协议(RFC 792)**:用于在IP主机、路由器之间传递控制消息。 - **ARP协议(RFC 826)**:地址解析协议,将网络层地址解析成链路层地址。 #### 3.2 传输层协议 - **TCP协议(RFC 793)**:传输控制协议,提供面向连接的、可靠的数据传输服务。 - **UDP协议(RFC 768)**:用户数据报协议,提供无连接的、不可靠的传输服务。 #### 3.3 应用层协议 - **HTTP协议(RFC 2616等)**:超文本传输协议,用于万维网数据传输。 - **FTP协议(RFC 959)**:文件传输协议,用于文件的上传和下载。 - **SMTP协议(RFC 5321)**:简单邮件传输协议,用于邮件发送。 - **DNS协议(RFC 1035)**:域名系统,用于将域名转换成IP地址。 ### 4. RFC文档的应用和实践 网络工程师、开发人员、系统管理员和其他IT专业人员通常需要阅读RFC文档来了解特定技术的具体实现细节。例如,设计一个网络服务时,需要参考相关协议的标准RFC来确保服务的兼容性和可靠性。在遇到网络问题时,RFC文档也可以提供权威的故障排除信息。 ### 5. 如何获取和理解RFC文档 RFC文档是公开的,并且可以从互联网工程任务组(IETF)的官方网站免费获取。对于非专业人员来说,直接阅读RFC文档可能会有一定难度,因为它们通常包含大量的技术术语和细节描述。为了更好地理解和应用RFC文档,可以通过网络课程、专业书籍和实践操作相结合的方式来学习。 ### 6. RFC文档对网络研究的影响 RFC文档是网络技术研究的基础,它们不仅提供了网络协议的详细规范,而且还有助于新的网络技术和应用的发现。学术研究者和工程师通过分析和改进现有的RFC标准,能够推动网络技术的进步。 通过以上对网络原理RFC文档的详细介绍,我们可以看出,RFC文档不仅为网络行业提供了一个开放、共享和权威的知识库,而且它也是网络技术不断进步和发展的基石。掌握RFC文档的知识,对于从事网络相关工作的专业人士来说,无疑是一种重要的技能和财富。
recommend-type

【PLC流水灯设计全面攻略】:从理论到实践,专家带你实现零故障控制系统

# 摘要 本文系统介绍了PLC(可编程逻辑控制器)流水灯的设计、硬件接线技术、编程实现及深入应用。首先,概述了流水灯设计的理论基础和PLC硬件的基本组成、工作原理以及硬件选型与配置。接着,重点探讨了PLC编程基础、控制逻辑的设计、编程语言的选择与使用,以及流水灯控制程序的编写与调试。此外,文章还分析了特殊流水灯效果的实现、流水灯在自动化生产线的应用案例,以及故障诊断与维护。最后,针对当前技术趋势和挑战,展望了PLC流水灯设计的创新方向,包括智能控制系统的融合与面向未来的系统设计展望。 # 关键字 PLC;流水灯设计;硬件接线;编程实现;故障诊断;自动化生产线 参考资源链接:[基于PLC的流
recommend-type

针对你range 代码生成效果图

在Python中,`range()` 函数用于生成一系列数字,常与其他循环结构一起使用来完成迭代操作。虽然 `range()` 本身并不直接生成“效果图”,但我们可以将它和数据可视化库(如 Matplotlib 或 Seaborn)结合起来,创建基于范围值的数据分布图表。 下面是一个简单的例子,展示如何通过 Python 的 `matplotlib.pyplot` 模块配合 `range()` 来绘制一条直线并标记点的位置: ```python import matplotlib.pyplot as plt # 使用 range() 创建 x 轴数值序列 x_values = list(
recommend-type

自定义圆角ListView布局及点击效果解析

标题“CornerListviewDemo”指的是一个Demo程序,这个Demo展示了一种对ListView组件进行定制的实现,旨在根据ListView中项的多少以及布局,动态改变列表项的角的形状。这个Demo的开发和实现涉及到Android开发中的UI定制、布局文件编写以及可能的Java或Kotlin编程。 在描述中提到的行为是,ListView在不同数据量下展现不同的视觉效果。具体来说,当ListView只有一个列表项时,它会表现为四个角都是圆角的卡片式布局。当有两条列表项时,第一条列表项的上边角会是圆角,而第二条列表项的下边角会是圆角。最后,当列表中有多条记录时,除了第一条和最后一条列表项的首尾是圆角,中间的列表项将不再具有圆角,呈现出常规的矩形形状。这种设计可以为用户提供清晰的视觉层次感,使得界面看起来更为美观。 从标签“圆角 Listview 自定义 点击效果 布局”中,可以提取出以下关键知识点: 1. 圆角效果的实现:在Android中实现圆角效果,通常可以通过XML中的shape资源来定义。例如,可以在drawble资源文件中定义一个矩形形状,并通过设置其corners属性来赋予圆角。开发者还可以通过编程方式在代码中动态地绘制圆角,例如使用canvas类的drawRoundRect方法。 2. ListView的自定义:ListView是Android中用于展示滚动列表的基本组件。开发者可以通过自定义Adapter来改变ListView的每项布局。在本Demo中,需要根据列表项的数量来改变ListView中每个项的圆角属性,这通常意味着需要在Adapter的getView()方法中实现逻辑,来根据条件判断并设置相应的布局属性。 3. 点击效果:ListView中的每个列表项除了展示数据外,还可以响应用户的点击事件。在Android中,为ListView设置点击效果,通常需要为ListView设置一个OnItemClickListener。点击效果可以通过设置背景资源(比如按压状态的背景)或者通过定义动画资源来实现。 4. 布局的理解和使用:在Android开发中,布局文件负责定义界面的结构。XML布局文件通过使用各种布局容器(如LinearLayout, RelativeLayout, ConstraintLayout等)来组织界面元素。自定义ListView的布局可能需要对布局结构有深入的了解,以便根据需要调整布局的属性,实现期望的视觉效果。 结合压缩包子文件名称列表中的“CornerListviewDemo”,不难推断出该文件包含了上述Demo程序的源代码或者是相关的项目文件。在该文件中,开发者可以通过查看源代码来学习和理解如何实现自定义的ListView,特别是涉及到圆角、布局定制以及点击响应等方面。 总体来说,该Demo项目对于Android开发人员来说是一个很好的学习资源,可以从中学习如何进行UI组件的定制、布局优化以及交互效果的增强。对于希望通过代码优化提升用户体验的开发者而言,该项目具有一定的参考价值。
recommend-type

【图像处理新境界】:形态学滤波与tc itk的结合使用指南

# 摘要 本文系统阐述了形态学滤波技术的理论基础、应用实践以及ITK库和tcITK框架的概述与优化。首先介绍了形态学滤波的基本操作及其高级技术,接着详细说明了如何在ITK库中集成和应用形态学滤波器,并讨论了在图像处理中的具体案例。文章还介绍了tcITK框架,它为ITK提供了扩展和性能优化,以及在特
recommend-type

watch -n 0.5 nvidia-smi

### 如何使用 `watch` 命令配合 `nvidia-smi` 实现实时监控 通过组合命令工具可以实现对 NVIDIA GPU 的实时状态监控。具体来说,`watch` 是 Linux 系统中的一个实用程序,用于定期执行指定的命令并显示其输出。当将其与 `nvidia-smi` 结合使用时,可以通过设置刷新间隔来实现实时更新。 以下是具体的实现方法: #### 使用 `watch` 和 `-n` 参数 为了使 GPU 状态每 0.5 秒刷新一次,可以运行以下命令: ```bash watch -n 0.5 nvidia-smi ``` 上述命令中,`-n 0.5` 表示每隔 0.5
recommend-type

commons-dbcp.jar 1.4版本介绍与功能概述

标题所指的知识点是关于名为commons-dbcp.jar的Java库版本1.4,这是一个开源的Java数据库连接池实现,由Apache软件基金会提供。数据库连接池是一种重要的中间件技术,用于管理数据库连接的池化资源,能够提高应用程序访问数据库的效率。Apache Commons DBCP(Database Connection Pooling)是Apache Commons项目的一部分,提供了一套完整的数据库连接池管理机制。 描述中重复提及commons-dbcp.jar可能是为了强调该文件的重要性或是文件名在上下文中多次出现。由于描述信息并未提供额外的详细信息,我们将重点关注标题所涉及的知识点。 标签中再次提及commons-dbcp.jar,这表明文档或文件系统中的标签用于关联或标识与该文件相关的所有信息,包括版本号。 文件名称列表中显示的是commons-dbcp-1.4,这意味着我们正在讨论的是这个特定版本的DBCP连接池库。通常,一个完整的压缩包文件名会包含版本号以区分不同版本。 **Apache Commons DBCP知识点详解** 1. **基础概念** Apache Commons DBCP是一个用于创建和管理数据库连接池的Java库。连接池是一种池化资源技术,它在应用程序和数据库之间维护一定数量的数据库连接。通过重用一组固定的连接来访问数据库,而不是每次需要时都建立新的连接,连接池可以提高应用程序的性能,并且减少资源消耗。 2. **功能和优势** Commons DBCP提供了一组丰富的功能,比如: - 配置连接池属性,如最小和最大连接数、连接池生命周期和验证查询等。 - 对数据库连接进行有效性检查,确保返回给用户的都是有效的连接。 - 提供多种数据库连接工厂来支持不同的数据库。 - 支持JDBC驱动程序的懒加载。 - 支持多线程访问,确保线程安全。 - 提供了扩展点来允许开发者进行自定义行为。 3. **使用场景** 当一个Java应用程序需要频繁地与数据库交互时,使用数据库连接池是非常有意义的。比如在Web应用、服务端应用、批处理程序以及需要高并发访问数据库的场合,使用连接池可以有效地减少数据库连接的建立和关闭开销,提升整体性能。 4. **连接池配置** DBCP库允许开发者通过配置文件或编程方式设置连接池参数。常用参数包括: - initialSize:初始连接数。 - minIdle:最小空闲连接数。 - maxIdle:最大空闲连接数。 - maxTotal:最大连接数。 - maxWaitMillis:最大等待获取连接时间。 - validationQuery:用于验证连接是否有效的SQL查询。 这些参数可以根据应用程序的负载和需求进行调整。 5. **依赖管理** 在使用commons-dbcp库时,通常需要将其添加到项目的构建路径中。如果是使用Maven进行依赖管理,可以在pom.xml文件中添加如下依赖配置: ```xml <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-dbcp2</artifactId> <version>2.9.0</version> </dependency> ``` 注意:这里示例使用的是commons-dbcp2的最新版本,因为 commons-dbcp.jar 可能指的是较旧的版本或特定项目的专有库,而最新的Apache Commons DBCP已迁移到dbcp2包下。 6. **版本演进** 正如前面提到的,库的版本号是识别库特性和功能的关键。在版本迭代中,可能会添加新功能、修复bug或提供性能上的改进。因此,开发人员在选择使用时应该关注版本信息,确保使用的是最新稳定版本以获取最佳的支持和功能集。 7. **应用场景优化** 根据不同的应用场景,可能需要对commons-dbcp库进行相应的优化。例如,在高并发环境下,可能需要调整最大连接数和等待时间来避免连接池耗尽。在内存受限的情况下,可能需要减少空闲连接的数量以节省资源。开发者需要根据实际应用情况来配置合适的参数。 8. **安全性** 数据库连接池在配置时还需要考虑安全性问题,比如如何安全地存储数据库密码。Apache Commons DBCP支持多种认证方式,包括明文密码、加密密码和第三方认证机制。 总之,commons-dbcp.jar作为一个成熟的数据库连接池解决方案,为Java开发者提供了强大的工具来有效地管理数据库连接,提高应用程序的性能和稳定性。对于数据库访问频繁的应用,合理配置和优化DBCP库是保证良好系统性能的关键步骤。
recommend-type

Linux音频自动化:一步到位制作个性化音量调整脚本

# 摘要 Linux音频自动化是一个涉及音频技术原理、系统管理工具和脚本编写的应用领域。本文首先介绍了Linux音频自动化的基础知识和理论框架,包括数字音频基础、音频信号处理、Linux音频管理工具 ALSA 和 PulseAudio,以及自动化脚本的构成和音量控制命令。随后,文章深入探讨了音频自动化脚本的实践技巧,涵盖环境准备、脚本逻辑编写、音量监控和调整流程,以及脚本的优化与
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部