C++RRT算法代码
时间: 2023-09-08 11:08:07 浏览: 138
以下是一个简单的C++示例代码,演示了如何实现基本的Rapidly-exploring Random Tree (RRT)算法:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <ctime>
#include <cstdlib>
struct Node {
double x;
double y;
};
// 计算两个点之间的欧氏距离
double distance(const Node& a, const Node& b) {
return std::sqrt(std::pow(a.x - b.x, 2) + std::pow(a.y - b.y, 2));
}
// 在RRT树中找到最近邻节点的索引
int findNearest(const std::vector<Node>& tree, const Node& randomPoint) {
double minDist = std::numeric_limits<double>::max();
int nearestIndex = -1;
for (int i = 0; i < tree.size(); i++) {
double dist = distance(tree[i], randomPoint);
if (dist < minDist) {
minDist = dist;
nearestIndex = i;
}
}
return nearestIndex;
}
// RRT算法主函数
std::vector<Node> rrt(const Node& start, const Node& goal, int maxIterations, double stepSize) {
std::vector<Node> tree;
tree.push_back(start);
std::srand(std::time(nullptr));
for (int i = 0; i < maxIterations; i++) {
Node randomPoint;
randomPoint.x = std::rand() % 10;
randomPoint.y = std::rand() % 10;
int nearestIndex = findNearest(tree, randomPoint);
Node nearestPoint = tree[nearestIndex];
double directionX = (randomPoint.x - nearestPoint.x) / distance(randomPoint, nearestPoint);
double directionY = (randomPoint.y - nearestPoint.y) / distance(randomPoint, nearestPoint);
Node newPoint;
newPoint.x = nearestPoint.x + stepSize * directionX;
newPoint.y = nearestPoint.y + stepSize * directionY;
tree.push_back(newPoint);
// 判断是否接近目标点
if (distance(newPoint, goal)
阅读全文