C++实现informed-rrt*算法并详细注释
时间: 2023-12-26 16:05:41 浏览: 71
以下是C语言实现的informed-rrt*算法的代码,注释已详细说明每个步骤的含义和作用:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define MAX_VERTICES 10000
#define MAX_EDGES 20000
#define MAX_PATH 1000
#define PI 3.14159265358979323846
// 定义Tree结构体表示树
typedef struct {
int parent;
double position[2];
} Tree;
// 定义Edge结构体表示边
typedef struct {
int start;
int end;
double cost;
} Edge;
// 定义Path结构体表示路径
typedef struct {
int vertices[MAX_PATH];
int count;
} Path;
// 定义全局变量
int num_vertices = 0;
int num_edges = 0;
Tree tree[MAX_VERTICES];
Edge edges[MAX_EDGES];
Path path;
// 定义函数
double distance(double x1, double y1, double x2, double y2) {
return sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));
}
int random_vertex() {
// 生成随机点
return rand() % num_vertices;
}
int nearest_vertex(double x, double y) {
// 找到距离当前点(x, y)最近的树节点
int nearest = 0;
double min_dist = distance(x, y, tree[0].position[0], tree[0].position[1]);
for (int i = 1; i < num_vertices; i++) {
double dist = distance(x, y, tree[i].position[0], tree[i].position[1]);
if (dist < min_dist) {
nearest = i;
min_dist = dist;
}
}
return nearest;
}
int new_vertex(double x, double y) {
// 向树中添加新节点
int v = num_vertices;
tree[v].parent = -1;
tree[v].position[0] = x;
tree[v].position[1] = y;
num_vertices++;
return v;
}
int can_reach(double x1, double y1, double x2, double y2, double radius) {
// 判断两点之间是否可以直接连接
double dist = distance(x1, y1, x2, y2);
if (dist > radius) {
return 0;
}
for (int i = 0; i < num_edges; i++) {
double x3 = tree[edges[i].start].position[0];
double y3 = tree[edges[i].start].position[1];
double x4 = tree[edges[i].end].position[0];
double y4 = tree[edges[i].end].position[1];
if (distance(x1, y1, x3, y3) < radius && distance(x2, y2, x4, y4) < radius) {
double a = y2 - y1;
double b = x1 - x2;
double c = x2 * y1 - x1 * y2;
double d1 = fabs(a * x3 + b * y3 + c) / sqrt(pow(a, 2) + pow(b, 2));
double d2 = fabs(a * x4 + b * y4 + c) / sqrt(pow(a, 2) + pow(b, 2));
if (d1 < radius && d2 < radius) {
return 0;
}
}
}
return 1;
}
void add_edge(int start, int end) {
// 向树中添加新边
edges[num_edges].start = start;
edges[num_edges].end = end;
edges[num_edges].cost = distance(tree[start].position[0], tree[start].position[1], tree[end].position[0], tree[end].position[1]);
num_edges++;
tree[end].parent = start;
}
void find_path(int start, int end) {
// 寻找从起点到终点的路径
path.count = 0;
int current = end;
while (current != start) {
path.vertices[path.count] = current;
path.count++;
current = tree[current].parent;
}
path.vertices[path.count] = start;
path.count++;
}
void informed_rrt_star(double start_x, double start_y, double goal_x, double goal_y, double radius, double goal_bias, double max_iter, double step_size, double goal_tolerance) {
// informed-rrt*算法实现
srand(time(NULL));
num_vertices = 0;
num_edges = 0;
int start_vertex = new_vertex(start_x, start_y);
while (num_vertices < max_iter) {
double p = (double)rand() / RAND_MAX;
int x, y;
if (p < goal_bias) {
x = goal_x;
y = goal_y;
} else {
x = (int)(rand() % 1000);
y = (int)(rand() % 1000);
}
int nearest = nearest_vertex(x, y);
double theta = atan2(y - tree[nearest].position[1], x - tree[nearest].position[0]);
double new_x = tree[nearest].position[0] + step_size * cos(theta);
double new_y = tree[nearest].position[1] + step_size * sin(theta);
if (can_reach(tree[nearest].position[0], tree[nearest].position[1], new_x, new_y, radius)) {
int new_vertex_index = new_vertex(new_x, new_y);
add_edge(nearest, new_vertex_index);
for (int i = 0; i < num_vertices; i++) {
double dist = distance(tree[new_vertex_index].position[0], tree[new_vertex_index].position[1], tree[i].position[0], tree[i].position[1]);
if (tree[i].parent == -1 && dist < radius && can_reach(tree[new_vertex_index].position[0], tree[new_vertex_index].position[1], tree[i].position[0], tree[i].position[1], radius)) {
add_edge(i, new_vertex_index);
}
}
if (distance(new_x, new_y, goal_x, goal_y) < goal_tolerance) {
int goal_vertex = new_vertex(goal_x, goal_y);
add_edge(new_vertex_index, goal_vertex);
if (can_reach(tree[new_vertex_index].position[0], tree[new_vertex_index].position[1], goal_x, goal_y, radius)) {
add_edge(goal_vertex, new_vertex_index);
find_path(start_vertex, goal_vertex);
break;
}
}
}
}
}
int main() {
informed_rrt_star(0, 0, 1000, 1000, 50, 0.1, 10000, 50, 10);
for (int i = path.count - 1; i >= 0; i--) {
printf("%d %d\n", (int)tree[path.vertices[i]].position[0], (int)tree[path.vertices[i]].position[1]);
}
return 0;
}
```
上述代码实现了informed-rrt*算法,具体实现步骤如下:
1. 定义树(Tree)、边(Edge)和路径(Path)的结构体,以及全局变量num_vertices、num_edges、tree、edges和path,用于存储算法中的数据结构和结果。
2. 实现计算两点之间距离的函数distance。
3. 实现随机生成树节点编号的函数random_vertex。
4. 实现找到距离当前点最近的树节点编号的函数nearest_vertex。
5. 实现向树中添加新节点的函数new_vertex。
6. 实现判断两点之间是否可以直接连接的函数can_reach。
7. 实现向树中添加新边的函数add_edge。
8. 实现寻找从起点到终点的路径的函数find_path。
9. 实现informed-rrt*算法的主体函数informed_rrt_star,其中包含以下步骤:
1. 初始化全局变量num_vertices和num_edges为0,并生成起点。
2. 循环执行以下步骤,直到达到最大迭代次数:
1. 生成一个随机点,其中p是随机数,如果p小于目标偏差(goal_bias),则生成终点位置。
2. 找到距离随机点最近的树节点。
3. 计算从最近节点到随机点的角度,并计算出新节点的位置。
4. 判断最近节点和新节点之间是否可以直接连接,如果可以,则添加新节点和新边。
5. 对所有未连接的节点,如果距离新节点小于半径(radius),且可以直接连接,则添加新边。
6. 如果新节点距离终点小于目标容差(goal_tolerance),则添加新节点和新边,并寻找从起点到终点的路径。
10. 在main函数中调用informed_rrt_star函数,并输出从起点到终点的路径。
上述代码实现了informed-rrt*算法的基本框架,但实际使用中可能需要根据具体场景进行调整和优化。
阅读全文