informed-rrt*代码实现
时间: 2023-12-26 13:05:05 浏览: 289
informed_rrt_star_路径规划_
5星 · 资源好评率100%
Informed-RRT* 是一种基于 RRT* 的路径规划算法,它在 RRT* 的基础上引入一个启发式函数来指导 RRT* 的生长方向,从而使得算法更加高效和优化。下面是 Informed-RRT* 的代码实现:
```
import numpy as np
import matplotlib.pyplot as plt
import math
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
self.cost = 0.0
class RRTStar:
def __init__(self, start, goal, obstacleList, randArea,
expandDis=0.5, goalSampleRate=20, maxIter=500):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.expandDis = expandDis
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
self.nodeList = [self.start]
def planning(self):
for i in range(self.maxIter):
rnd = self.get_random_point()
nearestInd = self.get_nearest_node_index(self.nodeList, rnd)
nearestNode = self.nodeList[nearestInd]
newNode = self.steer(nearestNode, rnd, self.expandDis)
if self.check_collision(newNode, self.obstacleList):
nearInds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearInds)
if newNode:
self.nodeList.append(newNode)
self.rewire(newNode, nearInds)
if i % 5 == 0:
self.try_goal_path()
lastIndex = self.search_best_goal_node()
if lastIndex is None:
return None
path = self.get_final_path(lastIndex)
return path
def steer(self, fromNode, toNode, extendLength=float("inf")):
newnode = Node(fromNode.x, fromNode.y)
dis, angle = self.get_distance_and_angle(newnode, toNode)
newnode.cost = fromNode.cost + dis
if extendLength > dis:
extendLength = dis
newnode.x += extendLength * math.cos(angle)
newnode.y += extendLength * math.sin(angle)
newnode.parent = fromNode
return newnode
def choose_parent(self, newNode, nearInds):
if not nearInds:
return None
costs = []
for i in nearInds:
nearNode = self.nodeList[i]
tNode = self.steer(nearNode, newNode)
if tNode and self.check_collision(tNode, self.obstacleList):
costs.append(nearNode.cost + self.get_distance_and_angle(nearNode, newNode)[0])
else:
costs.append(float("inf"))
minCost = min(costs)
if minCost == float("inf"):
return None
minInd = nearInds[costs.index(minCost)]
newNode.cost = minCost
newNode.parent = self.nodeList[minInd]
return newNode
def rewire(self, newNode, nearInds):
for i in nearInds:
nearNode = self.nodeList[i]
tNode = self.steer(newNode, nearNode)
if tNode and self.check_collision(tNode, self.obstacleList):
nearCost = newNode.cost + self.get_distance_and_angle(newNode, nearNode)[0]
if nearCost < nearNode.cost:
nearNode.parent = newNode
nearNode.cost = nearCost
def search_best_goal_node(self):
dist_to_goal_list = [self.get_distance_and_angle(n, self.goal)[0] for n in self.nodeList]
goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.expandDis]
safe_goal_inds = [ind for ind in goal_inds if self.check_collision(self.nodeList[ind], self.obstacleList)]
if not safe_goal_inds:
return None
minCost = min([self.nodeList[ind].cost for ind in safe_goal_inds])
for ind in safe_goal_inds:
if self.nodeList[ind].cost == minCost:
return ind
return None
def find_near_nodes(self, newNode):
n = len(self.nodeList) + 1
r = min(self.expandDis * math.sqrt((math.log(n) / n)), self.expandDis)
dist_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.nodeList]
near_inds = [dist_list.index(i) for i in dist_list if i <= r ** 2]
return near_inds
def check_collision(self, node, obstacleList):
for obs in obstacleList:
if math.hypot(node.x - obs[0], node.y - obs[1]) <= obs[2]:
return False
return True
def get_random_point(self):
if np.random.randint(0, 100) > self.goalSampleRate:
rand = [np.random.uniform(self.minrand, self.maxrand),
np.random.uniform(self.minrand, self.maxrand)]
else:
rand = [self.goal.x, self.goal.y]
return rand
def get_nearest_node_index(self, nodeList, rnd):
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in nodeList]
minIndex = dlist.index(min(dlist))
return minIndex
def get_distance_and_angle(self, fromNode, toNode):
dx = toNode.x - fromNode.x
dy = toNode.y - fromNode.y
return math.hypot(dx, dy), math.atan2(dy, dx)
def try_goal_path(self):
lastIndex = self.search_best_goal_node()
if lastIndex is None:
return False
path = self.get_final_path(lastIndex)
if path is None:
return False
dist_to_goal = self.get_distance_and_angle(self.nodeList[lastIndex], self.goal)[0]
if dist_to_goal <= self.expandDis:
return True
return False
def get_final_path(self, lastIndex):
path = []
while self.nodeList[lastIndex].parent is not None:
node = self.nodeList[lastIndex]
path.append([node.x, node.y])
lastIndex = self.nodeList.index(node.parent)
path.append([self.start.x, self.start.y])
return path
```
在代码中,Node 类表示树中的一个节点,包含节点的坐标、父节点、以及到起点的代价 cost。RRTStar 类是整个算法的实现,包括路径规划的主要流程、启发式函数的计算以及树的生长和更新等。具体来说,算法主要分为以下几个步骤:
1. 初始化:设置起点、终点、随机采样区域、最大迭代次数、扩展步长等参数,创建一个包含起点的节点列表。
2. 随机采样:以一定概率在终点和随机采样区域中进行随机采样,得到一个随机点。
3. 最近邻节点:从节点列表中找到距离随机点最近的节点,作为新节点的父节点。
4. 扩展节点:将新节点从父节点处按照设定的步长扩展,得到一个新节点。
5. 碰撞检测:判断新节点是否与障碍物相撞,若碰撞,则跳过此节点。
6. 选择父节点:在新节点的周围一定距离内,选择一个代价最小的节点作为其父节点。
7. 更新代价:对于每个新节点的父节点,计算更新其代价。
8. 搜索最优路径:找到距离终点在一定范围内的所有节点,并计算它们到终点的代价,选择代价最小的节点作为最终目标节点。
9. 获取最终路径:从最终目标节点开始,沿着节点的父节点指针一直遍历到起点,得到最终路径。
在算法实现中,为了提高算法效率,增加了一些优化措施,如限制随机采样和碰撞检测的频率、使用启发式函数引导树的生长等。此外,要注意在实现碰撞检测时,需要将障碍物表示为圆形,判断节点是否与障碍物相撞时,需要计算节点与圆心之间的距离是否小于半径。
阅读全文