C++实现informed-rrt*算法
时间: 2023-12-26 21:05:06 浏览: 136
A*算法的C++实现
4星 · 用户满意度95%
Informed-RRT*是一种基于Rapidly-exploring Random Tree (RRT)算法的路径规划算法,它可以在未知环境中规划出可行路径。该算法通过使用启发信息来改进搜索效率,从而使得搜索结果更快收敛到最优解。下面是使用C语言实现Informed-RRT*算法的一些基本步骤:
1. 定义RRT结构体
首先,我们需要定义一个结构体描述RRT的节点。RRT节点包括一个状态和指向其父节点的指针。
```c
typedef struct rrt_node {
double state[2];
struct rrt_node *parent;
} RRTNode;
```
2. 初始化起点和终点
接下来,我们需要初始化起点和终点。在这个过程中,我们需要设置起点的指向空指针,因为它没有父节点。
```c
RRTNode *initialize_start_and_goal(double start[2], double goal[2]) {
RRTNode *start_node = malloc(sizeof(RRTNode));
RRTNode *goal_node = malloc(sizeof(RRTNode));
memcpy(start_node->state, start, sizeof(double) * 2);
memcpy(goal_node->state, goal, sizeof(double) * 2);
start_node->parent = NULL;
goal_node->parent = NULL;
return start_node;
}
```
3. 定义随机采样函数
接下来,我们需要定义一个随机采样函数,该函数返回一个随机状态。在Informed-RRT*算法中,我们需要利用启发信息来指导随机采样。因此,我们需要传入一个最优解的距离,以便在搜索中使用。
```c
void random_sample(double sample[2], double goal[2], double radius) {
double dx = goal[0] - sample[0];
double dy = goal[1] - sample[1];
double distance = sqrt(dx * dx + dy * dy);
if (distance < radius) {
memcpy(sample, goal, sizeof(double) * 2);
return;
}
double angle = atan2(dy, dx);
double r = radius * (double)rand() / RAND_MAX;
sample[0] += r * cos(angle);
sample[1] += r * sin(angle);
}
```
4. 定义距离函数
在Informed-RRT*算法中,我们需要使用两个距离函数:欧几里得距离和启发距离。欧几里得距离用于计算两个状态之间的实际距离,而启发距离用于指导随机采样。
```c
double euclidean_distance(double *state1, double *state2) {
double dx = state1[0] - state2[0];
double dy = state1[1] - state2[1];
return sqrt(dx * dx + dy * dy);
}
double heuristic_distance(double *state, double *goal, double radius) {
double dx = goal[0] - state[0];
double dy = goal[1] - state[1];
double distance = sqrt(dx * dx + dy * dy);
return fmin(distance, radius);
}
```
5. 定义最近邻函数
在RRT算法中,我们需要找到最近邻节点。为了提高搜索效率,我们可以使用k-d树来存储RRT树。在这里,我们使用Brute-force算法找到最近邻节点。
```c
RRTNode *nearest_neighbor(RRTNode *root, double state[2]) {
RRTNode *nearest = root;
double min_distance = euclidean_distance(root->state, state);
RRTNode *current = root;
while (current != NULL) {
double distance = euclidean_distance(current->state, state);
if (distance < min_distance) {
nearest = current;
min_distance = distance;
}
current = current->parent;
}
return nearest;
}
```
6. 定义可达函数
在RRT算法中,我们需要判断两个状态之间是否可达。在这里,我们使用直线路径来判断两个状态之间是否可达。
```c
int is_reachable(double *state1, double *state2, double step_size) {
double distance = euclidean_distance(state1, state2);
int n = (int)ceil(distance / step_size);
for (int i = 1; i <= n; i++) {
double ratio = (double)i / n;
double x = (1 - ratio) * state1[0] + ratio * state2[0];
double y = (1 - ratio) * state1[1] + ratio * state2[1];
if (!is_valid(x, y)) {
return 0;
}
}
return 1;
}
```
7. 定义插入节点函数
在RRT算法中,我们需要插入新节点。在Informed-RRT*算法中,我们需要使用启发距离来判断新节点是否足够优秀。
```c
RRTNode *insert_node(RRTNode *nearest, double *sample, double step_size, double goal[2], double radius) {
double distance = euclidean_distance(nearest->state, sample);
if (distance > step_size) {
double ratio = step_size / distance;
sample[0] = (1 - ratio) * nearest->state[0] + ratio * sample[0];
sample[1] = (1 - ratio) * nearest->state[1] + ratio * sample[1];
}
if (!is_reachable(nearest->state, sample, step_size)) {
return NULL;
}
RRTNode *new_node = malloc(sizeof(RRTNode));
memcpy(new_node->state, sample, sizeof(double) * 2);
new_node->parent = nearest;
double heuristic = heuristic_distance(sample, goal, radius);
RRTNode *current = nearest;
while (current != NULL) {
double distance = euclidean_distance(current->state, sample);
if (distance > step_size) {
break;
}
double current_heuristic = heuristic_distance(current->state, goal, radius);
double cost = current->parent == NULL ? distance : current->parent->state[2] + distance;
if (cost + current_heuristic < heuristic) {
heuristic = cost + current_heuristic;
new_node->parent = current;
}
current = current->parent;
}
new_node->state[2] = new_node->parent == NULL ? distance : new_node->parent->state[2] + distance;
return new_node;
}
```
8. 定义路径生成函数
最后,我们需要定义一个函数来生成路径。在Informed-RRT*算法中,我们需要使用启发距离来指导搜索。
```c
RRTNode *get_best_node(RRTNode *root, double goal[2], double radius) {
RRTNode *best = NULL;
double best_cost = INFINITY;
queue<RRTNode *> q;
q.push(root);
while (!q.empty()) {
RRTNode *node = q.front();
q.pop();
double cost = node->state[2] + heuristic_distance(node->state, goal, radius);
if (cost < best_cost) {
best_cost = cost;
best = node;
}
for (int i = 0; i < node->children.size(); i++) {
q.push(node->children[i]);
}
}
return best;
}
void generate_path(RRTNode *start_node, RRTNode *best_node, vector<double> &path) {
RRTNode *current = best_node;
while (current != start_node) {
path.push_back(current->state[0]);
path.push_back(current->state[1]);
current = current->parent;
}
path.push_back(start_node->state[0]);
path.push_back(start_node->state[1]);
reverse(path.begin(), path.end());
}
```
完整代码如下:
阅读全文