编写代码通过串口调试助手发送0、1、2、3、4给STM32F407单片机的USART1,单片机根据收到的数字,利用高级定时器输出不同占空比的PWM波形,控制LED的亮度; STM32单片机要用中断的方式接收串口调试助手发来的数据。利用两个按键分别能够增强、减弱LED亮度等级,最暗不再减弱,最亮不再增强,按键动作检测也要用中断方式。

时间: 2023-12-23 12:05:04 浏览: 24
好的,这是一个基于串口通信和中断的STM32F407单片机控制LED亮度的程序。以下是程序的主要框架: ```c #include "stm32f4xx.h" #include "stm32f4xx_hal.h" #define LED_PIN GPIO_PIN_13 #define LED_PORT GPIOC UART_HandleTypeDef huart1; TIM_HandleTypeDef htim1; uint8_t received_data = 0; uint16_t pwm_value = 0; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_TIM1_Init(void); void increase_brightness(void); void decrease_brightness(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART1_UART_Init(); MX_TIM1_Init(); while (1) { // 根据接收到的数字设置PWM占空比 switch (received_data) { case '0': pwm_value = 0; break; case '1': pwm_value = 3277; // 10% 占空比 break; case '2': pwm_value = 6554; // 20% 占空比 break; case '3': pwm_value = 9831; // 30% 占空比 break; case '4': pwm_value = 13107; // 40% 占空比 break; default: break; } // 更新PWM占空比 __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, pwm_value); } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 接收到一个字节 if (huart->Instance == USART1) { HAL_UART_Receive_IT(&huart1, &received_data, 1); } } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { // 检测到按键动作 if (GPIO_Pin == GPIO_PIN_0) { increase_brightness(); } else if (GPIO_Pin == GPIO_PIN_1) { decrease_brightness(); } } void increase_brightness(void) { // 增加PWM占空比 if (pwm_value < 13107) { pwm_value += 3277; // 增加10% 占空比 __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, pwm_value); } } void decrease_brightness(void) { // 减少PWM占空比 if (pwm_value > 0) { pwm_value -= 3277; // 减少10% 占空比 __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, pwm_value); } } static void MX_TIM1_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; htim1.Instance = TIM1; htim1.Init.Prescaler = 83; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 65535; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } HAL_TIM_Base_Start(&htim1); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1); } static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } HAL_UART_Receive_IT(&huart1, &received_data, 1); } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_RESET); /*Configure GPIO pin : PC13 */ GPIO_InitStruct.Pin = LED_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct); /*Configure GPIO pins : PA0 PA1 */ GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI0_IRQn); HAL_NVIC_SetPriority(EXTI1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI1_IRQn); } void Error_Handler(void) { while (1) { } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } ``` 该程序首先初始化GPIO、UART和TIM模块,然后进入while循环进行串口接收和PWM输出。在接收到一个字节时,程序会根据接收到的数字设置PWM占空比,然后更新PWM输出。在按下按键时,程序会检测到中断并执行相应的函数,增加或减少PWM占空比,从而控制LED亮度。 需要注意的是,需要在HAL_UART_RxCpltCallback和HAL_GPIO_EXTI_Callback中调用HAL_UART_Receive_IT和HAL_GPIO_Exti_IRQHandler来重新启动UART和GPIO中断。此外,需要在MX_TIM1_Init函数中设置PWM占空比的初始值为0。 希望这个程序能够对您有所帮助!

相关推荐

最新推荐

recommend-type

通过学习USART1深入STM32F107VCT6的串口通信

STM32有数个串口,每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的,由于STM32采用分数波特率,所以STM32的串口波特率设置范围很宽,而且误差很小。
recommend-type

STM32串口USART2程序

PA2,PA2端口复用为串口2的TX,RX。在配置某个口线时,首先应对它所在的端口的时钟进行使能。否则无法配置成功,由于用到了端口B, 因此要对这个端口的时钟。进行使能,同时由于用到复用IO口功能用于配置串口。因此...
recommend-type

Stm32项目中遇到的一些问题以及解决办法

本文主要针对STM32项目中在USART、调试及编程中遇到的问题进行了描述并给出了相应的解决办法。
recommend-type

STM32下多个串口的Printf用法

首先提出网上讲的添加printf()到程序中一般的步骤,但很明显这个方法使用printf()只能输出到usart1,如果需要使用多个usart呢,肯定不能都是用printf()。方法见文中,是继续是用usart2的printf()功能。
recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。