tmp = pd.pivot_table(data=sale_data, index='车类',columns='year', values='销量', aggfunc='sum', fill_value=0) cols=['#E0FFFF','#76EEC6','#66D88E','#66CDAA','#8FBC8F'] explode = [0.1, 0.1, 0.1, 0.1] plt.pie(sale_data[0,2:6], explode=explode, labels=tmp.index, colors=cols, autopct='%1.1f%%') plt.title('汽车车类各年度的销量') plt.show()
时间: 2023-12-26 08:04:26 浏览: 151
这段代码中的`pd.pivot_table()`函数使用了pandas库来创建一个数据透视表,显示了每个汽车车类在不同年份的销售总量。接下来的代码使用了相同的颜色和数据索引来创建一个饼状图,但是在绘制饼状图时,使用了错误的数据源。`sale_data[0,2:6]`应该替换为`tmp.sum(axis=1)`。
因此,可以做出以下修改:
```
tmp = pd.pivot_table(data=sale_data, index='车类',columns='year', values='销量', aggfunc='sum', fill_value=0)
cols=['#E0FFFF','#76EEC6','#66D88E','#66CDAA','#8FBC8F']
explode = [0.1, 0.1, 0.1, 0.1]
plt.pie(tmp.sum(axis=1), explode=explode, labels=tmp.index, colors=cols, autopct='%1.1f%%')
plt.title('汽车车类各年度的销量')
plt.show()
```
这段代码中使用了正确的数据源,并且调用了`tmp.sum(axis=1)`来计算每个汽车车类在所有年份的销售总量。其他的代码部分与之前的修改一致,生成了一个正确的饼状图。
相关问题
Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False) Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False) Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False) Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False) Genre_data_NA # Genre_data_DF = pd.concat([Genre_data_NA,Genre_data_EU,Genre_data_JP,Genre_data_Other],axis = 1) data=Genre_data_NA Genre_name = data._stat_axis.values.tolist() # explodes=[0.1,0.1,0.1,0.1] plt.figure(figsize=(10,10)) plt.subplot(2,2,1) plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("北美地区的不同类型游戏销售额") plt.subplot(2,2,2) plt.pie(x=Genre_data_EU,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("欧洲地区的不同类型游戏销售额") plt.subplot(2,2,3) plt.pie(x=Genre_data_JP,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("日本地区的不同类型游戏销售额") plt.subplot(2,2,4) plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("其它地区的不同类型游戏销售额") plt.show()
这段代码使用了 `pandas` 和 `matplotlib` 来创建一个包含四个子图的图表,用于可视化同地区(北美、欧洲日本和其他地区)的游戏销售额按游戏类型进行的分布情况。
首先,通过 `data.pivot_table()` 创建了四个数据表格 `Genre_data_NA`、`Genre_data_EU`、`Genre_data_JP` 和 `Genre_data_Other`,分别代表北美、欧洲、日本和其他地区的不同游戏类型的销售额。
然后,通过 `data._stat_axis.values.tolist()` 获取游戏类型的名称,并存储在变量 `Genre_name` 中。
接下来,使用 `plt.figure(figsize=(10,10))` 创建一个大小为 10x10 的图表。
然后,使用 `plt.subplot(2,2,1)` 创建第一个子图,并设置其位置为 2x2 的矩阵中的第一个位置。
通过 `plt.pie()` 绘制饼图。通过 `x=Genre_data_NA` 将销售额作为饼图的值,通过 `labels=Genre_name` 将游戏类型作为饼图的标签,通过 `autopct="%0.1f%%"` 设置百分比显示格式,通过 `shadow=True` 添加阴影效果。
使用 `plt.title()` 设置第一个子图的标题为 "北美地区的不同类型游戏销售额"。
接下来,重复上述步骤,在不同的位置创建剩下的三个子图,并设置标题为 "欧洲地区的不同类型游戏销售额"、"日本地区的不同类型游戏销售额"、"其他地区的不同类型游戏销售额"。
最后一行的 `plt.show()` 用于显示图表。
data = pd.read_csv('data.csv', encoding='gbk') data['DATA_DATE'] = pd.to_datetime(data['DATA_DATE']) result = data.pivot_table(values='KWH', index='CONS_NO', columns='DATA_DATE') print(result)给这段代码生成注释
# 导入 pandas 模块
import pandas as pd
# 从 data.csv 文件中读取数据,以 gb2312 编码方式进行解码
data = pd.read_csv('data.csv', encoding='gbk')
# 将 DATA_DATE 列的数据转换为 datetime 类型
data['DATA_DATE'] = pd.to_datetime(data['DATA_DATE'])
# 以 CONS_NO 为行索引,以 DATA_DATE 为列索引,以 KWH 为值,生成透视表
result = data.pivot_table(values='KWH', index='CONS_NO', columns='DATA_DATE')
# 打印输出透视表
print(result)
```
注释解释:
1. 导入 pandas 模块。
2. 使用 pd.read_csv() 函数从 data.csv 文件中读取数据,使用 encoding 参数指定编码方式为 gb2312。
3. 使用 pd.to_datetime() 函数将 DATA_DATE 列的数据转换为 datetime 类型。
4. 使用 pivot_table() 函数生成透视表,其中 values 参数表示透视表中的值,index 参数表示透视表的行索引,columns 参数表示透视表的列索引。
5. 使用 print() 函数打印输出透视表。
阅读全文