LSTM数据集+python源码
时间: 2024-06-24 16:01:31 浏览: 213
LSTM数据集+python源码.rar
LSTM(长短期记忆网络)是一种递归神经网络,特别适合处理序列数据,如时间序列预测、文本生成等任务。在Python中,我们可以使用深度学习库Keras或PyTorch来构建LSTM模型并加载数据集。
以下是一个简单的LSTM数据集加载和训练的基本流程:
1. **导入库**:
```python
import numpy as np
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense, LSTM
```
2. **加载IMDB电影评论情感分析数据集**(假设数据集已经预处理好):
```python
top_words = 5000
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)
```
`imdb.load_data()`会返回电影评论的文本和对应的标签(正面或负面评价)。
3. **预处理数据**(例如将整数编码转换为向量):
```python
X_train = np.array([np.zeros((maxlen, top_words)) for _ in range(len(X_train))])
for i, sentence in enumerate(X_train):
for word in sentence:
if word != 0:
X_train[i, word] = 1
X_test = np.array([np.zeros((maxlen, top_words)) for _ in range(len(X_test))])
for i, sentence in enumerate(X_test):
for word in sentence:
if word != 0:
X_test[i, word] = 1
```
4. **创建LSTM模型**:
```python
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, top_words)))
model.add(Dense(1, activation='sigmoid')) # 输出层,用于二分类问题
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```
5. **训练模型**:
```python
model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))
```
阅读全文