根据问题2、问题3的模型建立与求解,分别写出问题2的python代码,问题3的python代码
时间: 2024-12-20 08:24:23 浏览: 10
好的,以下是根据问题2和问题3的模型建立与求解编写的Python代码示例:
### 问题2:空气净化器形状优化模型
```python
import numpy as np
from scipy.optimize import minimize
import random
# 定义目标函数
def objective_function(params):
shape, size, angle, wind_speed = params
# 假设目标函数为多个因素的加权和
efficiency = 0.5 * (shape + size + angle + wind_speed)
energy_consumption = 0.2 * (size + wind_speed)
noise_level = 0.3 * (angle + wind_speed)
# 综合目标函数
return efficiency - energy_consumption - noise_level
# 定义约束条件
def constraint1(params):
shape, size, angle, wind_speed = params
return size <= 0.05 # 体积约束
def constraint2(params):
shape, size, angle, wind_speed = params
return angle >= 0 and angle <= 90 # 角度约束
def constraint3(params):
shape, size, angle, wind_speed = params
return wind_speed >= 0 and wind_speed <= 5 # 风速约束
# 初始解
initial_params = [random.uniform(0, 1), random.uniform(0, 0.05), random.uniform(0, 90), random.uniform(0, 5)]
# 定义约束条件字典
constraints = [
{'type': 'ineq', 'fun': constraint1},
{'type': 'ineq', 'fun': constraint2},
{'type': 'ineq', 'fun': constraint3}
]
# 优化求解
result = minimize(objective_function, initial_params, method='SLSQP', constraints=constraints)
print("Optimal parameters for air purifier:")
print("Shape:", result.x[0])
print("Size:", result.x[1])
print("Angle:", result.x[2])
print("Wind Speed:", result.x[3])
```
### 问题3:空气加湿器形状优化模型
```python
import numpy as np
from scipy.optimize import minimize
import random
# 定义目标函数
def objective_function(params):
shape, volume, fog_outlet_area, fog_outlet_angle = params
# 假设目标函数为多个因素的加权和
humidification_efficiency = 0.5 * (shape + volume + fog_outlet_area + fog_outlet_angle)
energy_consumption = 0.2 * (volume + fog_outlet_area)
humidity_distribution = 0.3 * (fog_outlet_area + fog_outlet_angle)
# 综合目标函数
return humidification_efficiency - energy_consumption - humidity_distribution
# 定义约束条件
def constraint1(params):
shape, volume, fog_outlet_area, fog_outlet_angle = params
return volume <= 0.05 # 体积约束
def constraint2(params):
shape, volume, fog_outlet_area, fog_outlet_angle = params
return fog_outlet_area >= 0.001 and fog_outlet_area <= 0.01 # 出雾口面积约束
def constraint3(params):
shape, volume, fog_outlet_area, fog_outlet_angle = params
return fog_outlet_angle >= 0 and fog_outlet_angle <= 90 # 出雾口角度约束
# 初始解
initial_params = [random.uniform(0, 1), random.uniform(0, 0.05), random.uniform(0.001, 0.01), random.uniform(0, 90)]
# 定义约束条件字典
constraints = [
{'type': 'ineq', 'fun': constraint1},
{'type': 'ineq', 'fun': constraint2},
{'type': 'ineq', 'fun': constraint3}
]
# 优化求解
result = minimize(objective_function, initial_params, method='SLSQP', constraints=constraints)
print("Optimal parameters for air humidifier:")
print("Shape:", result.x[0])
print("Volume:", result.x[1])
print("Fog Outlet Area:", result.x[2])
print("Fog Outlet Angle:", result.x[3])
```
### 说明
1. **目标函数**:根据问题描述,目标函数是多个因素的加权和,包括净化效率、能耗和噪声水平(问题2),以及加湿效率、能耗和湿度分布(问题3)。
2. **约束条件**:定义了体积、角度和风速(问题2)以及体积、出雾口面积和出雾口角度(问题3)的约束条件。
3. **优化求解**:使用`scipy.optimize.minimize`函数进行优化求解,选择了SLSQP方法,这是一种序列二次规划方法,适合带有约束条件的优化问题。
希望这些代码对你有所帮助!如果有任何问题或需要进一步的帮助,请随时告诉我。
阅读全文