用python写一段建立一阶直线倒立摆模型的代码

时间: 2023-09-08 22:04:42 浏览: 66
### 回答1: 以下是用 Python 编写的一阶直线倒立摆模型的代码。 ```python import numpy as np import matplotlib.pyplot as plt # 模型参数 M = 1 # 摆杆质量 m = 0.1 # 小球质量 L = 1 # 摆杆长度 g = 9.8 # 重力加速度 # 定义状态向量 x = [theta, dtheta, x, dx] # theta - 摆杆的倾角 # dtheta - 摆杆的角速度 # x - 小球的水平位置 # dx - 小球的水平速度 # 初始化状态向量 x0 = np.array([np.pi/6, 0, 0, 0]) # 控制输入向量 u = F # F - 小球的水平受力 # 初始化控制输入向量 u0 = np.array([0]) # 定义状态函数 f(x, u) def f(x, u): theta, dtheta, x, dx = x sin_theta = np.sin(theta) cos_theta = np.cos(theta) num1 = m*L*sin_theta*(dtheta**2) + u*cos_theta - m*g*sin_theta*cos_theta den1 = M + m*(1 - cos_theta**2) num2 = (M + m)*g*sin_theta - u - m*L*sin_theta*(dtheta**2)*cos_theta den2 = L*(M + m*(1 - cos_theta**2)) dtheta_dot = num1 / den1 dx_dot = num2 / den2 return np.array([dtheta, dtheta_dot, dx, dx_dot]) # 定义欧拉法离散化函数 def euler_discretization(x, u, f, dt): x_next = x + f(x, u)*dt return x_next # 模拟函数 def simulate(x0, u0, f, dt, T): timesteps = int(T/dt) x_hist = np.zeros((timesteps+1, x0.shape[0])) x_hist[0] = x0 u_hist = np.zeros((timesteps, u0.shape[0])) u_hist[0] = u0 for i in range(1, timesteps+1): x_next = euler_discretization(x_hist[i-1], u_hist[i-1], f, dt) x_hist[i] = x_next if i < timesteps: u_hist[i] = u0 # 控制输入不变 return x_hist, u_hist # 参数设置 dt = 0.01 # 时间步长 T = 10 # 模拟时长 # 运行模拟 x_hist, u_hist = simulate(x0, u0, f, dt, T) # 绘图 plt.figure() plt.plot(np.arange(0, T+dt, dt), x_hist[:, 0]) plt.title('Inverted Pendulum') plt.xlabel('Time (s)') plt.ylabel('Theta (rad)') plt.show() ``` 可以看到,这段代码使用欧拉法离散化方法,模拟了一阶直线倒立摆模型,并绘制了摆杆的倾角随时间的变化。 ### 回答2: 要用Python编写一段代码来建立一阶直线倒立摆模型,可以按照以下步骤进行: 1. 导入所需的库:numpy、matplotlib等。 2. 定义模型的参数,包括摆杆的长度、质量以及重力加速度等。 3. 定义模型的初始条件,包括初始角度和角速度等。 4. 定义模型的微分方程,即倒立摆的动力学方程。可以使用欧拉方法或其他数值积分方法对微分方程进行离散化处理。 5. 定义模型的控制策略,比如使用PID控制器或LQR控制器等。 6. 根据控制策略,计算控制输入,即施加在摆杆上的力或力矩。 7. 使用数值积分方法对微分方程进行数值求解,得到下一个时间步的角度和角速度。 8. 循环进行步骤6和步骤7,直到达到所需的仿真时间或满足停止条件。 9. 可选地,通过绘制图表来可视化模型的运动过程,如倒立摆的角度随时间的变化曲线。 总之,通过使用适当的库和数值方法,结合适当的控制策略,可以用Python编写出一段建立一阶直线倒立摆模型的代码。

相关推荐

最新推荐

recommend-type

vscode写python时的代码错误提醒和自动格式化的方法

主要介绍了vscode写python时的代码错误提醒和自动格式化的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

主要介绍了Python利用逻辑回归模型解决MNIST手写数字识别问题,结合实例形式详细分析了Python MNIST手写识别问题原理及逻辑回归模型解决MNIST手写识别问题相关操作技巧,需要的朋友可以参考下
recommend-type

Python实现新型冠状病毒传播模型及预测代码实例

在本篇文章里小编给大家整理的是关于Python实现新型冠状病毒传播模型及预测代码内容,有兴趣的朋友们可以学习下。
recommend-type

python实现感知机线性分类模型示例代码

主要给大家介绍了关于python实现感知机线性分类模型的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
recommend-type

不到40行代码用Python实现一个简单的推荐系统

主要给大家介绍了如何利用不到40行python代码实现一个简单的推荐系统,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。