sample_dict = {'a': 100, 'b': 200, 'c': 300} in_dict(sample_dict, 100) -> True in_dict(sample_dict, 110) -> False

时间: 2024-05-04 12:17:51 浏览: 8
以下是判断字典中是否存在某个值的代码: ``` def in_dict(d, value): return value in d.values() ``` 使用示例: ``` sample_dict = {'a': 100, 'b': 200, 'c': 300} print(in_dict(sample_dict, 100)) # 输出 True print(in_dict(sample_dict, 110)) # 输出 False ```
相关问题

class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']

这段代码是用来创建一个自定义的 PyTorch 数据集类,名为 Dn_datasets。它的构造函数接受四个参数:data_root,data_dict,transform 和 load_all。其中,data_root 是数据集的根目录,data_dict 是一个字典,包含了数据集中每个样本的路径、宽度和高度等信息,transform 是一个用于数据增强的 torchvision.transforms 实例,load_all 是一个布尔值,指示是否将整个数据集加载到内存中。 在 __init__ 函数中,如果 load_all 是 False,那么 self.data_dict 直接赋值为传入的 data_dict;否则,它会遍历 data_dict 中的每个样本,将其加载到内存中,并将其图像数据、宽度和高度信息封装为一个字典,并将其存储到 self.data_dict 中。 __len__ 函数返回数据集的样本数量,__getitem__ 函数接受一个索引 idx,返回该索引对应的样本。如果 load_all 是 False,那么它会从磁盘上读取该样本的图像数据;否则,它会从 self.data_dict 中读取该样本的图像数据。如果 to_gray 是 True,那么它会将图像转换为灰度图。最后,如果 repeat_crop 大于 1,那么它会对该样本进行多次裁剪,并返回多个图像和目标对作为一个元组;否则,它会对该样本进行单次裁剪,并返回一个图像和目标对作为一个元组。

def split_dot(words): dots=[',','.','!','?'] str_data = [] for w in words: ##*****——请在下方补充代码——***** ##*****——请在上方补充代码——***** return(str_data) def get_eng_dicts(datas): w_all_dict = {} for sample in datas: for token in sample.split(" "): ##*****——请在下方补充代码——***** ##*****——请在上方补充代码——***** sort_w_list = sorted(w_all_dict.items(), key=lambda d: d[1], reverse=True) w_keys = [x for x,_ in sort_w_list[:7000-2]] w_keys.insert(0,"<PAD>") w_keys.insert(0,"<UNK>") w_dict = { x:i for i,x in enumerate(w_keys) } i_dict = { i:x for i,x in enumerate(w_keys) } return w_dict,i_dict

在第一个函数的注释中,我们可以看到需要将输入的words字符串列表中的句子分割成单词,并将其中的标点符号去除。我们可以使用Python的内置方法split()来分割字符串,并使用字符串的replace()方法来去除标点符号。 下面是修改后的代码: ```python def split_dot(words): dots=[',','.','!','?'] str_data = [] for w in words: w = w.replace(".", "").replace(",", "").replace("!", "").replace("?", "") # 去除标点符号 str_data += w.split(" ") # 分割字符串 return(str_data) ``` 在第二个函数的注释中,我们可以看到需要将datas中的所有单词统计出现次数,并根据出现次数从多到少排序,然后选取出现次数最多的前7000个单词作为词典。我们可以使用Python的collections模块中的Counter类来统计单词出现次数,并使用sorted()函数来排序。 下面是修改后的代码: ```python from collections import Counter def get_eng_dicts(datas): w_all_dict = Counter() for sample in datas: words = sample.split(" ") # 统计单词出现次数 w_all_dict.update(words) # 按照出现次数从多到少排序 sort_w_list = sorted(w_all_dict.items(), key=lambda d: d[1], reverse=True) # 选取出现次数最多的前7000个单词作为词典 w_keys = [x for x,_ in sort_w_list[:7000-2]] w_keys.insert(0,"<PAD>") w_keys.insert(0,"<UNK>") w_dict = { x:i for i,x in enumerate(w_keys) } i_dict = { i:x for i,x in enumerate(w_keys) } return w_dict,i_dict ```

相关推荐

def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]): # tf.reset_default_graph() result_dir = 'results/'+style_name check_folder(result_dir) test_files = glob('{}/*.*'.format(test_dir)) test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=False): test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess: # tf.global_variables_initializer().run() # load model ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") return # stats_graph(tf.get_default_graph()) begin = time.time() for sample_file in tqdm(test_files) : # print('Processing image: ' + sample_file) sample_image = np.asarray(load_test_data(sample_file, img_size)) image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file))) fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, sample_file) else: save_images(fake_img, image_path, None) end = time.time() print(f'test-time: {end-begin} s') print(f'one image test time : {(end-begin)/len(test_files)} s'什么意思

import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)修改代码使得显示决策树模型以及多分类的roc曲线和auc值

最新推荐

recommend-type

pyzmq-23.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

腾讯全端Bootstrap响应式布局

使用媒体查询和Bootstrap框架,模仿腾讯全端响应式网页布局。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB数据可视化黑科技:洞悉数据背后的秘密

![MATLAB数据可视化黑科技:洞悉数据背后的秘密](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB数据可视化的基本原理 MATLAB数据可视化是一种将数据转化为图形表示形式的技术,以帮助人们理解和分析数据。其基本原理包括: - **数据表示:**将原始数据转换为图形元素,如点、线和条形。 - **图形布局:**确定图形元素在绘图区域中的位置和大小。 - **图形美化:**添加标题、标签、颜色和纹理等元素,以增强图形的可读性和美观性。 - **交互性:**允
recommend-type

优化算法计算单位面积年平均输出热功率的代码

计算单位面积年平均输出热功率的代码具体情况取决于你所要解决的问题和需要的数据。然而,我可以给你一个通用的优化算法的框架,你可以根据具体情况进行调整。 首先,你需要明确计算单位面积年平均输出热功率的数学公式或算法。假设你已经有了计算热功率的函数 `calculate_power`,它接受一些输入参数,并返回热功率值。 下面是一个示例的优化算法框架,以最大化单位面积年平均输出热功率为目标: ```python import random def objective_function(params): # 这个函数用于计算目标函数的值 # 根据具体情况,你需要将 params