def save_checkpoint(state, is_best, save_path, filename='checkpoint.pth.tar'): torch.save(state, os.path.join(save_path,filename)) if is_best: shutil.copyfile(os.path.join(save_path,filename), os.path.join(save_path,'model_best.pth.tar'))
时间: 2024-04-08 19:32:28 浏览: 224
这段代码是用于保存训练过程中的模型检查点的函数。下面是代码的解释:
- `save_checkpoint` 函数会接收以下参数:`state`(包含模型和优化器状态的字典)、`is_best`(一个布尔值,表示当前模型是否是最佳模型)、`save_path`(保存检查点的路径)和可选的 `filename`(保存检查点的文件名,默认为 "checkpoint.pth.tar")。
- 首先,函数会使用 `torch.save` 函数将状态 `state` 保存到指定路径和文件名的文件中。
- 如果 `is_best` 为 `True`,则将保存的文件复制到一个名为 "model_best.pth.tar" 的文件中,表示这是目前为止的最佳模型。
这个函数的作用是将模型和优化器的状态保存为检查点文件,以便在需要时进行恢复或加载。如果 `is_best` 参数为 `True`,还会将最佳模型保存在另一个文件中。
相关问题
how to use utils.save_checkpoint
To use utils.save_checkpoint, you first need to import the necessary libraries in your Python script. Then, you can create a function to save a checkpoint of your model during training or after training is complete. The function would involve specifying the file path and name of the checkpoint, as well as the model and any other important information you want to include in the checkpoint.
Here is an example of how to use utils.save_checkpoint in PyTorch:
```python
import torch
import os
def save_checkpoint(state, checkpoint_dir, filename='checkpoint.pth.tar'):
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
filepath = os.path.join(checkpoint_dir, filename)
torch.save(state, filepath)
print('Checkpoint saved to {}'.format(filepath))
# Call the function to save a checkpoint
checkpoint = {
'epoch': 10,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': loss
}
save_checkpoint(checkpoint, 'checkpoints')
```
In this example, the save_checkpoint function takes in a dictionary called "state" which contains the epoch, model state_dict, optimizer state_dict, and loss. It also takes in the directory where you want to save the checkpoint, and the filename you want to give to the checkpoint file.
When you call the function, you pass in the dictionary containing the relevant information and the directory where you want to save the checkpoint file. The function then creates the directory if it doesn't exist, combines the directory and filename to create the full file path, and saves the checkpoint using torch.save.
You can then load this checkpoint later using the utils.load_checkpoint function, which can be useful for resuming training or making predictions.
checkpoint = torch.load('checkpoint_0040.pth.tar', map_location=device)
这行代码是用于加载已经训练好的模型的checkpoint文件。具体来说,它会将保存在checkpoint_0040.pth.tar文件中的模型参数加载到当前的设备(例如CPU或GPU)中。
其中,'checkpoint_0040.pth.tar'是保存了模型参数的文件名,而map_location参数则指定了模型加载到的设备。如果你的模型是在GPU上训练的,但是在加载时想要将其转移到CPU上,那么你可以将map_location设置为'cpu'。如果你的模型是在CPU上训练的,那么可以将map_location设置为None,让PyTorch自动检测设备。
阅读全文