现已用pytorch代码写好了VAE的两个编码器:1个3层的MLP对形状为(16968,12,307,2)的v_w数据集进行速度和星期特征的相关性计算,另一个是2层的GAT对形状为(16968,12,307,2)的v_d数据集进行速度和度特征的相关性计算。分别编码后送入进行拼接计算隐变量均值和方差,再将隐变量计算送入解码器得到recon_x。最后将这个recon_x和真实的x送入2维卷积构成的GRU模块生成最终的预测值。上述模块均已构建好,请你按照这个思路,帮我用pytorch定义一个def epoch_train_with_batch(train_flow_input, train_target, batch_size):,最终返回return sum(train_loss)/len(train_loss),sum(train_loss_vae)/len(train_loss_vae)
时间: 2024-03-31 20:39:02 浏览: 111
好的,按照您的描述,我为您定义了一个 `epoch_train_with_batch` 函数,如下所示:
```python
import torch
import torch.nn.functional as F
def epoch_train_with_batch(train_flow_input, train_target, batch_size):
train_loss = []
train_loss_vae = []
# 定义模型
class VAE(torch.nn.Module):
def __init__(self):
super(VAE, self).__init__()
# 编码器1
self.encoder_vw = torch.nn.Sequential(
torch.nn.Linear(12*307*2, 200),
torch.nn.ReLU(),
torch.nn.Linear(200, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 20),
torch.nn.ReLU(),
)
# 编码器2
self.encoder_vd = torch.nn.Sequential(
torch.nn.Linear(12*307*2, 200),
torch.nn.ReLU(),
torch.nn.Linear(200, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 20),
torch.nn.ReLU(),
)
# 隐变量均值和方差计算
self.fc_mu = torch.nn.Linear(40, 10)
self.fc_logvar = torch.nn.Linear(40, 10)
# 解码器
self.decoder = torch.nn.Sequential(
torch.nn.Linear(20, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 200),
torch.nn.ReLU(),
torch.nn.Linear(200, 12*307*2),
torch.nn.Sigmoid(),
)
# GRU模块
self.gru = torch.nn.GRU(2, 2, 2)
# 2维卷积
self.conv = torch.nn.Conv2d(1, 1, 2)
def encode(self, x_vw, x_vd):
# 编码器1
h_vw = self.encoder_vw(x_vw.view(-1, 12*307*2))
# 编码器2
h_vd = self.encoder_vd(x_vd.view(-1, 12*307*2))
# 拼接编码后的特征
h = torch.cat((h_vw, h_vd), dim=1)
# 计算隐变量均值和方差
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
z = mu + eps*std
return z
def decode(self, z):
# 解码器
x = self.decoder(z)
# 将解码后的特征送入GRU模块
x, _ = self.gru(x.view(-1, 1, 307, 24))
# 2维卷积
x = self.conv(x)
return x
def forward(self, x_vw, x_vd):
mu, logvar = self.encode(x_vw, x_vd)
z = self.reparameterize(mu, logvar)
x = self.decode(z)
return x, mu, logvar
# 定义模型和优化器
model = VAE()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# 训练模型
for i in range(0, train_flow_input.size(0), batch_size):
x_vw = train_flow_input[i:i+batch_size, :, :, :, 0]
x_vd = train_flow_input[i:i+batch_size, :, :, :, 1]
y = train_target[i:i+batch_size, :]
# 前向传播
recon_x, mu, logvar = model(x_vw, x_vd)
# 计算重构误差
loss_recon = F.mse_loss(recon_x, y)
# 计算KL散度
loss_kl = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# 计算总的损失
loss = loss_recon + loss_kl
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录损失
train_loss.append(loss.item())
train_loss_vae.append(loss_recon.item() + loss_kl.item())
# 返回平均损失
return sum(train_loss)/len(train_loss), sum(train_loss_vae)/len(train_loss_vae)
```
这个函数接受 `train_flow_input` 和 `train_target` 作为输入,其中 `train_flow_input` 是形状为 `(16968, 12, 307, 2)` 的输入数据,`train_target` 是形状为 `(16968, 307, 24)` 的目标数据。`batch_size` 参数指定了每个 mini-batch 的大小。
函数的主要内容是构建一个 VAE 模型,然后使用 PyTorch 的自动微分功能计算损失并进行反向传播和优化。最后函数返回两个平均损失值,一个是总的损失,一个是重构误差和 KL 散度之和。
阅读全文