给出inception v2的pytorch代码

时间: 2023-06-30 20:13:48 浏览: 154
以下是Inception V2的PyTorch代码,其中包括了模型的定义和训练过程: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms class InceptionV2(nn.Module): def __init__(self): super(InceptionV2, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.norm1 = nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=1) self.conv2_1 = nn.Conv2d(64, 64, kernel_size=1) self.conv2_2 = nn.Conv2d(64, 192, kernel_size=3, padding=1) self.norm2 = nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=1) self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32) self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64) self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64) self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64) self.inception4c = InceptionModule(512, 128, 128, 256, 24, 64, 64) self.inception4d = InceptionModule(512, 112, 144, 288, 32, 64, 64) self.inception4e = InceptionModule(528, 256, 160, 320, 32, 128, 128) self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception5a = InceptionModule(832, 256, 160, 320, 32, 128, 128) self.inception5b = InceptionModule(832, 384, 192, 384, 48, 128, 128) self.pool5 = nn.AvgPool2d(kernel_size=7, stride=1) self.dropout = nn.Dropout(p=0.4) self.linear = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.pool1(x) x = self.norm1(x) x = self.conv2_1(x) x = self.conv2_2(x) x = self.norm2(x) x = self.pool2(x) x = self.inception3a(x) x = self.inception3b(x) x = self.pool3(x) x = self.inception4a(x) x = self.inception4b(x) x = self.inception4c(x) x = self.inception4d(x) x = self.inception4e(x) x = self.pool4(x) x = self.inception5a(x) x = self.inception5b(x) x = self.pool5(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.linear(x) return x class InceptionModule(nn.Module): def __init__(self, in_channels, out1x1, reduce3x3, out3x3, reduce5x5, out5x5, pool_proj): super(InceptionModule, self).__init__() self.branch1 = nn.Conv2d(in_channels, out1x1, kernel_size=1) self.branch2_1 = nn.Conv2d(in_channels, reduce3x3, kernel_size=1) self.branch2_2 = nn.Conv2d(reduce3x3, out3x3, kernel_size=3, padding=1) self.branch3_1 = nn.Conv2d(in_channels, reduce5x5, kernel_size=1) self.branch3_2 = nn.Conv2d(reduce5x5, out5x5, kernel_size=5, padding=2) self.branch4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branch4_2 = nn.Conv2d(in_channels, pool_proj, kernel_size=1) def forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2_1(x) branch2 = self.branch2_2(branch2) branch3 = self.branch3_1(x) branch3 = self.branch3_2(branch3) branch4 = self.branch4_1(x) branch4 = self.branch4_2(branch4) outputs = [branch1, branch2, branch3, branch4] return torch.cat(outputs, 1) # 加载数据 train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4, pin_memory=True) # 定义损失函数和优化器 model = InceptionV2().cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001) # 训练模型 for epoch in range(100): model.train() for i, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.cuda(), targets.cuda() outputs = model(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() if i % 100 == 0: print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' % (epoch+1, 100, i+1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for inputs, targets in test_loader: inputs, targets = inputs.cuda(), targets.cuda() outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (predicted == targets).sum().item() print('Epoch [%d/%d] Test Accuracy: %.2f %%' % (epoch+1, 100, 100 * correct / total)) ``` 需要注意的是,此代码只是Inception V2的一个简单实现,可能与论文中的架构设计存在一些差异。
阅读全文

相关推荐

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

【宝城期货-2024研报】宝城期货品种套利数据日报.pdf

研究报告
recommend-type

从头开始的 YOLOv1.zip

从头开始的 YOLOv1自述YOLOv1 的实现来自博客必需的pytorch 1.1.0火炬视觉numpy > 1.16.2opencv 3.4.1VOC2012数据集这个 repo 现在能做什么使用VOC2012数据集进行训练推理(测试图像)结果待办事项添加 mAP 指标
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。