import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import ModelCheckpoint # 数据集准备 # 从数据集中读取LINUX代码,进行分词、编码等预处理 # 构建LSTM模型 model = Sequential() model.add(LSTM(256, input_shape=(seq_length, vocab_size), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(128)) model.add(Dropout(0.2)) model.add(Dense(vocab_size, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam') # 设置模型检查点 filepath="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min') callbacks_list = [checkpoint] # 训练模型 model.fit(X, y, epochs=20, batch_size=128, callbacks=callbacks_list) # 使用模型生成LINUX代码 # 通过提供一些关键字或者代码片段来启动模型生成,模型会根据输入的信息生成相应的LINUX代码。这段代码为什么运行报错NameError: name 'seq_length' is not defined,怎么修改
时间: 2024-03-10 11:43:42 浏览: 134
import numpy as np import matplotlib.pyplot as plt import math
这段代码运行报错是因为变量 seq_length 没有定义,需要在代码中先定义 seq_length 变量。比如,你可以在数据集准备的代码中定义 seq_length,如下所示:
```python
seq_length = 100 # 这里可以根据实际情况进行调整
# 从数据集中读取LINUX代码,进行分词、编码等预处理
# ...
```
然后在构建LSTM模型时使用该变量,如下所示:
```python
# 构建LSTM模型
model = Sequential()
model.add(LSTM(256, input_shape=(seq_length, vocab_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128))
model.add(Dropout(0.2))
model.add(Dense(vocab_size, activation='softmax'))
```
这样就可以解决该错误了。
阅读全文