cwru轴承数据集处理代码
时间: 2023-05-16 21:03:17 浏览: 226
CWru轴承数据集是一个常用的振动信号数据集,其中包含不同工况下的机械轴承振动信号,并且经过了多种信号处理和特征提取方法的处理。为了更好地利用这个数据集,需要进行一些数据处理的工作。
首先,需要将数据集分为训练集和测试集。可以按照不同的工况将数据集进行分组,然后将每个组中的数据按照一定的比例划分为训练集和测试集。划分好后可以将数据集保存为npy文件,便于后续的读取和使用。
其次,需要进行数据标准化处理。对于每个特征值,可以使用标准差标准化的方法,将其转换为标准正态分布,以便更好地进行数据分析以及提高机器学习算法的精度。
接下来,可以选择多种机器学习算法对数据进行训练和预测。常见的算法包括线性回归、决策树、支持向量机、随机森林等。对于每种算法,可以通过交叉验证的方法来选择最优的模型参数,并使用该模型对测试集进行预测。
最后,可以通过混淆矩阵和ROC曲线来评估机器学习算法的性能。混淆矩阵可以用来评估预测结果的准确性和召回率等指标,ROC曲线则可以用于评估算法的分类效果。通过不断的调整算法的参数,可以最终得到一种性能较好的机器学习算法,并将其应用到实际问题中。
相关问题
以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,PyTorch实现基于GAN网络生成一维数据的代码
以下是基于GAN网络生成一维数据的PyTorch代码,使用CWRU轴承故障的振动信号数据库作为模型的训练集:
```python
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 定义生成器
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train_generator(gen, disc, optimizer, criterion, noise, real_data):
optimizer.zero_grad()
fake_data = gen(noise)
disc_fake = disc(fake_data)
loss = criterion(disc_fake, torch.ones_like(disc_fake))
loss.backward()
optimizer.step()
return loss
def train_discriminator(gen, disc, optimizer, criterion, noise, real_data):
optimizer.zero_grad()
fake_data = gen(noise)
disc_fake = disc(fake_data.detach())
disc_real = disc(real_data)
loss_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
loss_real = criterion(disc_real, torch.ones_like(disc_real))
loss = loss_fake + loss_real
loss.backward()
optimizer.step()
return loss
# 定义超参数
input_size = 1
hidden_size = 10
output_size = 1
num_epochs = 500
batch_size = 64
learning_rate = 0.001
# 加载训练集
data = np.load('bearing_dataset.npy')
train_data = torch.from_numpy(data).float()
# 初始化网络和优化器
gen = Generator(input_size, hidden_size, output_size)
disc = Discriminator(input_size, hidden_size, output_size)
gen_optimizer = torch.optim.Adam(gen.parameters(), lr=learning_rate)
disc_optimizer = torch.optim.Adam(disc.parameters(), lr=learning_rate)
# 定义损失函数
criterion = nn.BCELoss()
# 训练网络
for epoch in range(num_epochs):
for i in range(0, train_data.size(0), batch_size):
real_data = train_data[i:i+batch_size]
noise = torch.randn(batch_size, input_size)
gen_loss = train_generator(gen, disc, gen_optimizer, criterion, noise, real_data)
disc_loss = train_discriminator(gen, disc, disc_optimizer, criterion, noise, real_data)
if (epoch+1) % 50 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Gen loss: {gen_loss.item():.4f}, Disc loss: {disc_loss.item():.4f}')
# 生成新数据
with torch.no_grad():
noise = torch.randn(1000, input_size)
fake_data = gen(noise)
fake_data = fake_data.numpy()
# 绘制新数据分布
plt.hist(fake_data, bins=50)
plt.show()
```
在此代码中,我们定义了一个生成器和一个判别器。生成器将噪声作为输入,生成与训练集相似的数据。判别器将数据作为输入,输出一个0到1之间的数,表示输入数据是真实数据的概率。在训练过程中,我们交替训练生成器和判别器,使生成器能够生成更真实的数据,使判别器能够更好地区分真实数据和生成数据。
最后,我们使用生成器生成1000个新数据,并绘制它们的分布。可以看到,生成的数据分布与训练集的分布相似。
用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集从用CNN网络对电机轴承的一维振动信号做故障诊断,
好的,以下是使用PyTorch进行训练的代码,以CWRU轴承故障振动信号数据库为训练集,对电机轴承进行一维振动信号的故障诊断:
首先,需要导入PyTorch和相关库:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
```
接着,需要读取CWRU轴承故障振动信号数据库的数据。我们可以使用NumPy库读取CSV文件中的数据,并将其转换为PyTorch张量:
```
data = pd.read_csv('data.csv', header=None)
data = np.array(data)
data = torch.from_numpy(data).float()
```
假设我们的数据集包括了轴承的振动信号以及相应的故障类型标签,例如正常、内圈故障、外圈故障等。我们可以将数据集划分为训练集和测试集:
```
train_data = data[:8000, :-1]
train_labels = data[:8000, -1].long()
test_data = data[8000:, :-1]
test_labels = data[8000:, -1].long()
```
在训练之前,我们需要定义一个CNN模型。下面是一个简单的模型,包括两个卷积层和两个全连接层:
```
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv1d(1, 16, kernel_size=5, stride=2)
self.conv2 = nn.Conv1d(16, 32, kernel_size=5, stride=2)
self.fc1 = nn.Linear(2880, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2, stride=2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool1d(x, kernel_size=2, stride=2)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
```
然后,我们可以定义优化器和损失函数。这里我们选择Adam优化器和交叉熵损失函数:
```
model = CNN()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
```
接下来是训练模型的过程。我们将训练集分批进行训练,并在测试集上进行评估:
```
epochs = 10
batch_size = 32
for epoch in range(epochs):
running_loss = 0.0
for i in range(0, len(train_data), batch_size):
inputs = train_data[i:i+batch_size].unsqueeze(1)
labels = train_labels[i:i+batch_size]
optimizer.zero_grad()
outputs = model(inputs)
阅读全文