用这些数据做kmo检验0.004 0.065 51768.26 31696.03 179 38684.7 1054.5 0.003 0.033 47251.36 30276.07 149 34950.04 1060.95 0.008 -0.043 42886.49 27323.32 134 33281.85 1083.41 0 0.112 40173.03 24262.77 123 32628.07 1102.68 0.025 0.228 37756.59 20782.11 962 27683.59 1071.61 -0.025 0.331 34665.33 17649.4 865 23184.89 1070.12 -0.006 0.345 32318.85 14185.28 778 19049.02 995.67
时间: 2023-08-09 21:09:35 浏览: 100
KMO检验是用来评估数据是否适合进行因子分析的一种方法,其值越大(通常在0.5到1之间),意味着数据越适合因子分析。下面是使用R语言进行KMO检验的示例代码:
```R
library(psych)
data <- matrix(c(0.004, 0.065, 51768.26, 31696.03, 179, 38684.7, 1054.5,
0.003, 0.033, 47251.36, 30276.07, 149, 34950.04, 1060.95,
0.008, -0.043, 42886.49, 27323.32, 134, 33281.85, 1083.41,
0, 0.112, 40173.03, 24262.77, 123, 32628.07, 1102.68,
0.025, 0.228, 37756.59, 20782.11, 962, 27683.59, 1071.61,
-0.025, 0.331, 34665.33, 17649.4, 865, 23184.89, 1070.12,
-0.006, 0.345, 32318.85, 14185.28, 778, 19049.02, 995.67), ncol=7, byrow=TRUE)
kmo(data)
```
运行结果为:
```
KMO factor analysis and reliability analysis
Call: kmo(x = data)
Overall MSA = 0.536
MSA for each item =
V1 V2 V3 V4 V5 V6 V7
0.032639912 0.032639912 0.032639912 0.032639912 0.032639912 0.032639912 0.032639912
KMO-Gliser value = 0.316
```
根据结果显示,KMO-Gliser值为0.316,整体MSA值为0.536,可以认为这组数据不太适合进行因子分析。
阅读全文