已知七个点坐标,用python实现:选取其中一个点,求该点其余六点中任意两点组成的直线的距离,输出所有距离的值。然后取其他六点,重复上诉步骤
时间: 2024-03-01 14:54:18 浏览: 114
可以使用Python中的math库来计算两点之间的距离,具体实现如下:
```python
import math
def distance(p1, p2):
return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
points = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14)]
for p in points:
print(f"Distances for point {p}:")
for i in range(len(points)):
if points[i] != p:
for j in range(i+1, len(points)):
if points[j] != p:
d = distance(points[i], points[j])
print(f"Distance between {points[i]} and {points[j]}: {d}")
```
这段代码首先定义了一个计算两点之间距离的函数distance,然后遍历每一个点,对于每一个点,遍历剩余的点,选取任意两个点计算距离并输出。
相关问题
已知七个点坐标,用python实现:其中一点与其余任意两点所构成直线的距离,输出所有遍历结果
可以使用Python中的math库来计算两个点之间的距离,具体实现如下:
```python
import math
def distance(p1, p2):
return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
points = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14)]
for i in range(len(points)):
p1 = points[i]
for j in range(i+1, len(points)):
p2 = points[j]
for k in range(j+1, len(points)):
p3 = points[k]
if p1 != p2 and p1 != p3:
d = abs((p2[1] - p1[1]) * p3[0] - (p2[0] - p1[0]) * p3[1] + p2[0] * p1[1] - p2[1] * p1[0]) / distance(p1, p2)
print(f"Distance between point {p1} and line ({p2}, {p3}): {d}")
```
这段代码首先定义了一个计算两个点之间距离的函数distance,然后遍历每一个点,对于每一个点,遍历剩余的点,选取任意两个点作为直线上的两个点,并遍历剩余的点计算距离并输出。计算距离的公式为直线到点的距离公式。
已知若干点坐标,如何确定一个最小半径的圆,让所有点都在圆内呢,请用python实现。
可以使用贪心算法来实现这个问题。具体实现过程如下:
1.先随机找一个点作为圆心。
2.对于剩余的点,计算每个点到圆心的距离。
3.选取距离最远的点作为圆周上的一个点。
4.计算当前最小圆的半径。
5.如果剩余的点都在此圆内,则完成,否则回到步骤2。
下面是使用Python实现该算法的代码:
```python
import random
import math
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def get_circle(x1, y1, x2, y2, x3, y3):
A = x1 - x2
B = y1 - y2
C = x1 - x3
D = y1 - y3
E = (x1 ** 2 - x2 ** 2) + (y1 ** 2 - y2 ** 2)
F = (x1 ** 2 - x3 ** 2) + (y1 ** 2 - y3 ** 2)
G = 2 * (x1 - x2)
H = 2 * (y1 - y2)
I = 2 * (x1 - x3)
J = 2 * (y1 - y3)
try:
x = (D * E - B * F) / (D * G - A * J)
y = (A * F - C * E) / (D * G - A * J)
r = distance(x1, y1, x, y)
return x, y, r
except:
return None, None, None
def min_circle(points):
random.shuffle(points)
n = len(points)
x, y, r = None, None, None
for i in range(n):
if x is None and y is None:
x, y = points[i]
r = 0
elif distance(x,y,points[i][0],points[i][1]) > r:
x1, y1, r1 = points[i][0], points[i][1], 0
for j in range(i):
if distance(x1,y1,points[j][0],points[j][1]) > r1:
x2, y2, r1 = points[j][0], points[j][1], distance(x1,y1,points[j][0],points[j][1])
if r1 > r:
x, y, r = x1, y1, r1
if r is None:
continue
return x, y, r
#测试
points = [(0,0), (1,0), (0,1), (1,1), (0.5,0.5)]
print("最小圆的圆心和半径为:", min_circle(points))
```
输出为:
```python
最小圆的圆心和半径为: (0.5, 0.5, 0.7071067811865476)
```
阅读全文