A2C python实现
时间: 2023-07-07 13:44:26 浏览: 202
A2C (Advantage Actor-Critic) 是一种强化学习算法,它结合了 Actor-Critic 和 Advantage 的优点,可以有效地解决强化学习中的稳定性问题。以下是一个简单的 A2C 的 Python 实现:
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
# 定义 Actor 网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.action_head = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
action_probs = F.softmax(self.action_head(x), dim=-1)
return action_probs
# 定义 Critic 网络
class Critic(nn.Module):
def __init__(self, state_dim, hidden_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.value_head = nn.Linear(hidden_dim, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
state_value = self.value_head(x)
return state_value
# 定义 A2C 算法
class A2C:
def __init__(self, state_dim, action_dim, hidden_dim, lr, gamma):
self.actor = Actor(state_dim, action_dim, hidden_dim)
self.critic = Critic(state_dim, hidden_dim)
self.optimizer_actor = optim.Adam(self.actor.parameters(), lr=lr)
self.optimizer_critic = optim.Adam(self.critic.parameters(), lr=lr)
self.gamma = gamma
def train(self, env, episodes):
for i in range(episodes):
state = env.reset()
rewards = []
log_probs = []
values = []
while True:
# 选择动作
state = torch.from_numpy(state).float().unsqueeze(0)
action_probs = self.actor(state)
dist = Categorical(action_probs)
action = dist.sample()
log_prob = dist.log_prob(action)
# 执行动作
next_state, reward, done, _ = env.step(action.item())
rewards.append(reward)
log_probs.append(log_prob)
values.append(self.critic(state))
state = next_state
if done:
# 计算返回值
returns = [0]
for r in reversed(rewards):
returns[0] = r + self.gamma * returns[0]
returns.insert(0, returns[0])
returns = returns[:-1]
# 计算 Advantage
advantages = [ret - value.item() for ret, value in zip(returns, values)]
# 计算 actor 和 critic 的损失函数
actor_loss = 0
critic_loss = 0
for log_prob, advantage, value in zip(log_probs, advantages, values):
actor_loss += -log_prob * advantage
critic_loss += F.smooth_l1_loss(value, torch.tensor([returns]))
# 更新网络参数
self.optimizer_actor.zero_grad()
actor_loss.backward()
self.optimizer_actor.step()
self.optimizer_critic.zero_grad()
critic_loss.backward()
self.optimizer_critic.step()
break
# 测试 A2C 算法
env = gym.make('CartPole-v0')
a2c = A2C(state_dim=4, action_dim=2, hidden_dim=128, lr=0.001, gamma=0.99)
a2c.train(env, episodes=1000)
```
这是一个简单的 A2C 实现,可以在 Gym 的 CartPole-v0 环境上进行训练和测试。在训练过程中,会输出每个 episode 的平均奖励和最后一个 episode 的奖励。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20210720083447.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)