stm32cubeide adc dma

时间: 2023-10-16 16:26:37 浏览: 58
在STM32CubeIDE中,使用DMA传输ADC数据非常简单,以下是一些基本步骤: 1. 配置ADC 首先,你需要配置ADC模块以初始化所需的ADC通道。你可以使用CubeMX图形化工具或手动编写代码来完成此步骤。 2. 配置DMA 接下来,你需要配置DMA控制器以启用ADC数据传输。在CubeMX中,你可以选择“DMA设置”选项卡并启用所需的DMA通道。然后,你需要确定DMA通道的方向(从ADC读取数据还是向其他外设写入数据)和传输大小(单个数据项的大小以及传输的数据项数)。 3. 启用DMA传输 一旦ADC和DMA都被配置好了,你就可以使用HAL库中的函数启用DMA传输。一般来说,你需要使用以下函数: ```c HAL_ADC_Start_DMA(&hadc, (uint32_t *)adc_buffer, BUFFER_SIZE); ``` 这个函数将启动ADC转换,并将数据存储在adc_buffer数组中。DMA控制器将从这个数组中读取数据并将其传输到指定的目标。 4. 处理DMA中断 最后,你需要实现DMA中断处理程序以处理传输完成事件。在这个处理程序中,你可以执行任何你需要的操作,例如处理传输的数据,重新配置DMA传输或终止传输。 以上是使用DMA传输ADC数据的基本步骤,具体实现可能因不同的STM32 MCU型号和使用的外设而有所不同。你可以参考ST官方文档或在网络上查找更详细的教程。
相关问题

stm32CubeIDE配置stm32f411ceu6ADC检测DMA传输

以下是在STM32CubeIDE中配置stm32f411ceu6 ADC检测DMA传输的步骤: 1. 打开STM32CubeIDE并创建一个新工程,选择STM32F411CEU6作为目标设备。 2. 在工程文件夹中选择"Core"文件夹,右键单击"Src"文件夹并选择"New" -> "C File",创建一个新的C文件来编写ADC和DMA的代码。 3. 在代码中包含必要的头文件,如stm32f4xx_hal.h和stm32f4xx_hal_adc.h。 4. 在main()函数中初始化ADC和DMA,使用HAL_ADC_Init()和HAL_ADCEx_Calibration_Start()函数初始化ADC,使用HAL_DMA_Init()函数初始化DMA。 5. 配置ADC采样时间和通道,使用HAL_ADC_ConfigChannel()函数配置ADC通道和采样时间。 6. 启动DMA传输,使用HAL_ADC_Start_DMA()函数启动DMA传输。 7. 在while循环中,使用HAL_ADC_PollForConversion()函数检查ADC转换是否完成。 8. 一旦转换完成,使用HAL_ADC_GetValue()函数获取ADC转换值并将其存储在一个变量中。 9. 在main()函数中添加其他必要的代码。 下面是一个示例代码: ``` #include "main.h" #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_adc.h" ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); HAL_ADC_Start_DMA(&hadc1, (uint32_t*)&adc_value, 1); while (1) { HAL_ADC_PollForConversion(&hadc1, 100); if (HAL_ADC_GetState(&hadc1) == HAL_ADC_STATE_EOC) { adc_value = HAL_ADC_GetValue(&hadc1); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1 |RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } void MX_DMA_Init(void) { __HAL_RCC_DMA2_CLK_ENABLE(); HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); hdma_adc1.Instance = DMA2_Stream0; hdma_adc1.Init.Channel = DMA_CHANNEL_0; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_LOW; hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1); HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); } void Error_Handler(void) { __disable_irq(); while (1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif ``` 这是一个基本的代码框架,你可以根据需要进行修改和调整。同时,你需要连接ADC输入到正确的引脚并配置引脚为ADC输入。

stm32cubeide怎么设置采样频率

在STM32CubeIDE中设置ADC采样频率的步骤如下: 1. 首先,在“Pinout & Configuration”选项卡中选择需要使用的ADC通道,并将其映射到相应的GPIO引脚上。 2. 在“Clock Configuration”选项卡中,配置APB2总线的时钟频率和ADC的预分频值,以确定ADC的时钟频率。 3. 在“Configuration”选项卡中,设置ADC的采样时间和采样周期,以及DMA的扫描模式和连续转换模式。 4. 最后,在代码中使用HAL库函数启动ADC转换即可。 需要注意的是,ADC的采样频率与时钟频率、预分频值、采样时间和采样周期等参数有关,需要根据具体的应用场景进行调整。同时,为了保证数据的准确性,还需要注意DMA的设置,确保采样时间高于分辨率要求的采样时钟周期。

相关推荐

最新推荐

recommend-type

五子棋wuziq.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

单片机C语言Proteus仿真实例占空比可调模拟仿真程序

单片机C语言Proteus仿真实例占空比可调模拟仿真程序提取方式是百度网盘分享地址
recommend-type

单片机C语言Proteus仿真实例用数码管设计的可调式电子钟

单片机C语言Proteus仿真实例用数码管设计的可调式电子钟提取方式是百度网盘分享地址
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这