# 计算欧几里得距离 def i_euclid_dist(x, y):
时间: 2024-03-10 20:44:49 浏览: 62
欧几里得距离是指在几何空间中两点之间的距离,可以用以下公式计算:
d(x,y) = sqrt(sum((xi-yi)^2))
其中,x和y是两个n维向量,xi和yi是它们对应维度上的值。
以下是计算欧几里得距离的Python函数实现:
```python
import math
def i_euclid_dist(x, y):
"""
计算欧几里得距离
:param x: 向量x
:param y: 向量y
:return: 欧几里得距离
"""
if len(x) != len(y):
return -1
return math.sqrt(sum([(xi - yi) ** 2 for xi, yi in zip(x, y)]))
```
这个函数接受两个向量x和y作为输入,并返回它们之间的欧几里得距离。如果两个向量长度不相等,则返回-1。
相关问题
from math import * import numpy as np # 计算街区距离 def i_city_dist(x, y): # -------- 请在此处完成街区距离计算函数---------------------------- # 计算欧几里得距离 def i_euclid_dist(x, y): # -------- 请在此处完成欧几里得距离计算函数---------------------------- # 计算max距离 def i_max_dist(x, y): # -------- 请在此处完成max距离计算函数---------------------------- # 计算余弦相似度 def i_vec_cos(x, y): # -------- 请在此处完成余弦相似度计算函数---------------------------- #计算Mahalanobis距离 def i_maha_dist(x, y): # -------- 请在此处完成Mahalanobis距离计算函数---------------------------- x = np.array([1,2,3,4,5,6,7,8,9,10]) y = np.array([1157,1238,1358,1467,1584,1687,1789,1852,1911,1998]) print(i_city_dist(x,y)) print(i_euclid_dist(x, y)) print(i_vec_cos(x, y)) print(i_maha_dist(x,y))
以下是代码实现,供参考:
```python
from math import *
import numpy as np
# 计算街区距离
def i_city_dist(x, y):
return sum([abs(x[i] - y[i]) for i in range(len(x))])
# 计算欧几里得距离
def i_euclid_dist(x, y):
return sqrt(sum([(x[i] - y[i]) ** 2 for i in range(len(x))]))
# 计算max距离
def i_max_dist(x, y):
return max([abs(x[i] - y[i]) for i in range(len(x))])
# 计算余弦相似度
def i_vec_cos(x, y):
dot_product = np.dot(x, y)
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
return dot_product / (norm_x * norm_y)
# 计算Mahalanobis距离
def i_maha_dist(x, y):
cov = np.cov([x, y])
inv_cov = np.linalg.inv(cov)
diff = x - y
return sqrt(np.dot(np.dot(diff, inv_cov), diff))
x = np.array([1,2,3,4,5,6,7,8,9,10])
y = np.array([1157,1238,1358,1467,1584,1687,1789,1852,1911,1998])
print(i_city_dist(x,y))
print(i_euclid_dist(x, y))
print(i_vec_cos(x, y))
print(i_maha_dist(x,y))
```
注意,余弦相似度和马氏距离的计算需要使用NumPy库,因此在代码中导入了NumPy库。此外,在计算马氏距离时需要计算输入数据的协方差矩阵,因此使用了NumPy库的 cov 函数。
class KNearestNeighbor(object): def __init__(self): pass def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X, k=1): num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) d1 = -2 * np.dot(X, self.X_train.T) d2 = np.sum(np.square(X), axis=1, keepdims=True) d3 = np.sum(np.square(self.X_train), axis=1) dist = np.sqrt(d1 + d2 + d3) y_pred = np.zeros(num_test) for i in range(num_test): dist_k_min = np.argsort(dist[i])[:k] y_kclose = self.y_train[dist_k_min] y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) return y_pred注释每一行代码
这是一个K最近邻分类器的Python实现,以下是每一行代码的注释:
```
class KNearestNeighbor(object):
def __init__(self):
pass
# 训练函数,输入训练数据X和对应的标签y
def train(self, X, y):
self.X_train = X
self.y_train = y
# 预测函数,输入测试数据X和参数k表示选择的最近邻数,默认为1
def predict(self, X, k=1):
num_test = X.shape[0] # 测试数据集的大小
num_train = self.X_train.shape[0] # 训练数据集的大小
dists = np.zeros((num_test, num_train)) # 创建一个距离矩阵,大小为(num_test, num_train)
# 计算测试数据集和训练数据集之间的距离
d1 = -2 * np.dot(X, self.X_train.T) # 先计算两个矩阵的乘积,再将结果乘以-2
d2 = np.sum(np.square(X), axis=1, keepdims=True) # 计算测试数据集中每个数据的平方和
d3 = np.sum(np.square(self.X_train), axis=1) # 计算训练数据集中每个数据的平方和
dist = np.sqrt(d1 + d2 + d3) # 计算欧几里得距离
y_pred = np.zeros(num_test) # 创建一个长度为num_test的数组,用于存储预测结果
# 针对每个测试数据,选出距离最近的k个训练数据,并进行分类
for i in range(num_test):
dist_k_min = np.argsort(dist[i])[:k] # 选出距离最近的k个训练数据
y_kclose = self.y_train[dist_k_min] # 获取这k个训练数据的标签
y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) # 对这k个训练数据的标签进行投票,选出最多的标签作为预测结果
return y_pred
```
阅读全文