CNN卷积神经网络手写数字识别 ,python代码
时间: 2023-09-20 21:12:30 浏览: 115
好的,下面是一个简单的手写数字识别的卷积神经网络的 Python 代码:
1. 首先导入需要的库:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout
```
2. 加载 MNIST 数据集:
```python
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```
3. 对数据进行预处理:
```python
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
```
4. 将标签进行 one-hot 编码:
```python
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
```
5. 构建卷积神经网络模型:
```python
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
```
6. 编译模型:
```python
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
7. 训练模型:
```python
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
```
8. 在测试集上评估模型:
```python
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这段代码实现了一个简单的手写数字识别的卷积神经网络模型,可以在 MNIST 数据集上得到约 99% 的准确率。
阅读全文