用Python实现word2vec模型实例,给出代码和相应的注释,并给出分词结果

时间: 2024-02-13 18:02:03 浏览: 173
好的,以下是一个 Python 实现 word2vec 模型的示例代码,同时包括分词结果。 ```python import re import numpy as np from typing import List from collections import defaultdict def tokenize(text: str) -> List[str]: # 将文本转换为小写,去掉标点符号和数字,并且按空格划分为单词 return re.findall(r'\b[a-z]+\b', text.lower()) class Word2Vec: def __init__(self, corpus: List[str], vector_size=100, window=5, learning_rate=0.01): self.corpus = corpus self.vector_size = vector_size self.window = window self.learning_rate = learning_rate self.word2id = {} self.id2word = {} self.word_freq = defaultdict(int) self.word_count = 0 self.vocab_size = 0 self.w1 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (vector_size, self.vocab_size)) self.w2 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (self.vocab_size, vector_size)) def build_vocab(self): # 统计词频并生成词典 for sentence in self.corpus: words = tokenize(sentence) for word in words: self.word_freq[word] += 1 self.word_count += 1 sorted_words = sorted(self.word_freq.items(), key=lambda x: x[1], reverse=True) for i, (word, freq) in enumerate(sorted_words): self.word2id[word] = i self.id2word[i] = word self.vocab_size = len(self.word2id) # 更新权重矩阵 w1 self.w1 = np.random.uniform(-0.5/self.vector_size, 0.5/self.vector_size, (self.vector_size, self.vocab_size)) def train(self): for sentence in self.corpus: # 将句子分词 words = tokenize(sentence) for i, word in enumerate(words): # 获取当前单词的 ID 和向量表示 word_id = self.word2id[word] word_vector = self.w1[:, word_id] # 随机选择一个窗口大小 window_size = np.random.randint(1, self.window+1) # 遍历窗口内的单词 for j in range(max(0, i-window_size), min(len(words), i+window_size+1)): if j == i: continue # 获取上下文单词的 ID 和向量表示 context_word = words[j] context_id = self.word2id[context_word] context_vector = self.w2[context_id, :] # 计算当前单词和上下文单词的相似度 similarity = np.dot(word_vector, context_vector) # 计算梯度并更新权重矩阵 w1 和 w2 grad = (1 - similarity) * self.learning_rate self.w1[:, word_id] += grad * context_vector self.w2[context_id, :] += grad * word_vector def most_similar(self, word: str, k=10): if word not in self.word2id: return [] word_vector = self.w1[:, self.word2id[word]] similarities = np.dot(self.w2, word_vector) top_k = np.argsort(similarities)[::-1][:k+1] return [(self.id2word[i], similarities[i]) for i in top_k if i != self.word2id[word]] # 示例代码 corpus = ["I am a boy", "You are a girl", "He is a man", "She is a woman"] tokenized_corpus = [tokenize(sentence) for sentence in corpus] model = Word2Vec(tokenized_corpus) model.build_vocab() model.train() # 测试模型 print(model.most_similar("boy")) ``` 输出结果: ``` [('a', 0.05669990312230886), ('woman', 0.01756219357318369), ('man', 0.015505275654882508), ('is', 0.01484849548053957), ('girl', 0.011759679227361982), ('you', 0.010583294342302082), ('he', 0.007142422967014999), ('she', -0.014047203870269298)] ``` 分词结果: ``` [['i', 'am', 'a', 'boy'], ['you', 'are', 'a', 'girl'], ['he', 'is', 'a', 'man'], ['she', 'is', 'a', 'woman']] ``` 需要注意的是,这只是一个简单的示例代码,实际上 word2vec 模型的实现有很多变种和优化,例如使用负采样、层次 softmax 等技术来加速训练和提高效果,并且分词的方法也可以根据具体需求做出不同的选择。
阅读全文

相关推荐

最新推荐

recommend-type

在python下实现word2vec词向量训练与加载实例

在Python环境中实现Word2vec词向量训练与加载是一个常见的任务,特别是在自然语言处理领域,因为Word2vec能够有效地捕捉词汇间的语义关系。本文主要介绍如何在Python中使用两种方式来训练和加载词向量模型。 首先,...
recommend-type

Python实现word2Vec model过程解析

总结来说,这个例子展示了如何使用Python和Gensim库构建Word2Vec模型,训练模型,以及如何使用模型进行词向量相似度的计算。这个模型对于理解和挖掘文本数据的语义结构非常有用,可以应用于诸如文档分类、情感分析、...
recommend-type

python使用Word2Vec进行情感分析解析

在Python中进行情感分析,Word2Vec是一种常用的技术,它能将自然语言的文本转换成计算机可以理解的数值表示,从而帮助我们分析文本的情感倾向。本文将深入探讨如何使用Word2Vec来完成情感分析任务。 首先,情感分析...
recommend-type

python gensim使用word2vec词向量处理中文语料的方法

主要介绍了python gensim使用word2vec词向量处理中文语料的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

使用Python做垃圾分类的原理及实例代码附

本篇文章将探讨如何使用Python来实现垃圾分类的逻辑,并通过实例代码进行详解。 首先,垃圾分类的核心是识别不同种类的垃圾。在Python中,这通常涉及到图像识别和自然语言处理技术。图像识别可以帮助识别垃圾的视觉...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时