用Python实现word2vec模型实例,给出代码和相应的注释

时间: 2024-02-13 07:02:01 浏览: 40
好的,以下是一个简单的 Python 实现 word2vec 模型的示例代码: ```python import numpy as np import re from collections import defaultdict from typing import List def tokenize(text: str) -> List[str]: # 将文本转换为小写,去掉标点符号和数字,并且按空格划分为单词 return re.findall(r'\b[a-z]+\b', text.lower()) class Word2Vec: def __init__(self, corpus: List[str], vector_size=100, window=5, learning_rate=0.01): self.corpus = corpus self.vector_size = vector_size self.window = window self.learning_rate = learning_rate self.word2id = {} self.id2word = {} self.word_freq = defaultdict(int) self.word_count = 0 self.vocab_size = 0 self.w1 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (vector_size, self.vocab_size)) self.w2 = np.random.uniform(-0.5/vector_size, 0.5/vector_size, (self.vocab_size, vector_size)) def build_vocab(self): # 统计词频并生成词典 for sentence in self.corpus: words = tokenize(sentence) for word in words: self.word_freq[word] += 1 self.word_count += 1 sorted_words = sorted(self.word_freq.items(), key=lambda x: x[1], reverse=True) for i, (word, freq) in enumerate(sorted_words): self.word2id[word] = i self.id2word[i] = word self.vocab_size = len(self.word2id) # 更新权重矩阵 w1 self.w1 = np.random.uniform(-0.5/self.vector_size, 0.5/self.vector_size, (self.vector_size, self.vocab_size)) def train(self): for sentence in self.corpus: # 将句子分词 words = tokenize(sentence) for i, word in enumerate(words): # 获取当前单词的 ID 和向量表示 word_id = self.word2id[word] word_vector = self.w1[:, word_id] # 随机选择一个窗口大小 window_size = np.random.randint(1, self.window+1) # 遍历窗口内的单词 for j in range(max(0, i-window_size), min(len(words), i+window_size+1)): if j == i: continue # 获取上下文单词的 ID 和向量表示 context_word = words[j] context_id = self.word2id[context_word] context_vector = self.w2[context_id, :] # 计算当前单词和上下文单词的相似度 similarity = np.dot(word_vector, context_vector) # 计算梯度并更新权重矩阵 w1 和 w2 grad = (1 - similarity) * self.learning_rate self.w1[:, word_id] += grad * context_vector self.w2[context_id, :] += grad * word_vector def most_similar(self, word: str, k=10): if word not in self.word2id: return [] word_vector = self.w1[:, self.word2id[word]] similarities = np.dot(self.w2, word_vector) top_k = np.argsort(similarities)[::-1][:k+1] return [(self.id2word[i], similarities[i]) for i in top_k if i != self.word2id[word]] ``` 这个示例代码包含了以下几个部分: 1. `tokenize` 函数:对文本进行分词,去掉标点符号和数字,并将所有单词转换为小写。 2. `Word2Vec` 类:初始化函数接受一个文本列表 `corpus`,以及一些超参数,如向量维度 `vector_size`、窗口大小 `window` 和学习率 `learning_rate`。该类包含了以下几个方法: - `build_vocab`:构建词典,统计词频并生成词典,同时初始化权重矩阵 `w1`。 - `train`:训练模型,遍历文本列表中的每个句子,对于每个单词,随机选择一个窗口大小,并遍历窗口内的所有单词,计算当前单词和上下文单词的相似度,并更新权重矩阵 `w1` 和 `w2`。 - `most_similar`:寻找与给定单词最相似的 `k` 个单词,基于余弦相似度计算相似度。 3. 示例代码的主函数:包括读入文本数据、初始化模型、构建词典、训练模型和测试模型等步骤。 需要注意的是,这只是一个简单的示例代码,实际上 word2vec 模型的实现有很多变种和优化,例如使用负采样、层次 softmax 等技术来加速训练和提高效果。

相关推荐

最新推荐

recommend-type

Python实现word2Vec model过程解析

主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

在python下实现word2vec词向量训练与加载实例

word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型。 通过该模型可以对单词的相似度进行量化分析。 word2vec的训练方法有2种,...
recommend-type

python gensim使用word2vec词向量处理中文语料的方法

主要介绍了python gensim使用word2vec词向量处理中文语料的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python使用Word2Vec进行情感分析解析

python实现情感分析(Word2Vec) ** 前几天跟着老师做了几个项目,老师写的时候劈里啪啦一顿敲,写了个啥咱也布吉岛,线下自己就瞎琢磨,终于实现了一个最简单的项目。输入文本,然后分析情感,判断出是好感还是反感...
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依