装配线平衡遗传算算法matlab源码
时间: 2023-07-05 14:23:36 浏览: 94
21装配生产线任务平衡问题的遗传算法MATLAB源代码.docx
5星 · 资源好评率100%
以下是一个基本的装配线平衡问题的遗传算法 MATLAB 源代码。请注意,这只是一个基本的实现,您可能需要根据您的具体问题进行调整和修改。
```matlab
% 装配线平衡问题的遗传算法 MATLAB 源代码
% 定义问题参数
num_stations = 6; % 站点数
station_time = [4 2 5 3 1 6]; % 每个站点的处理时间
switch_time = [0 1 2 1 2 0]; % 切换站点所需的时间
num_individuals = 50; % 种群大小
mutation_rate = 0.05; % 变异率
crossover_rate = 0.8; % 交叉率
num_generations = 100; % 迭代次数
% 初始化种群
population = zeros(num_individuals, num_stations);
for i = 1:num_individuals
population(i, :) = randperm(num_stations);
end
% 迭代
for g = 1:num_generations
% 计算适应度
fitness = zeros(num_individuals, 1);
for i = 1:num_individuals
fitness(i) = calculate_fitness(population(i, :), station_time, switch_time);
end
% 选择
parents = tournament_selection(population, fitness);
% 交叉
offspring = crossover(parents, crossover_rate);
% 变异
offspring = mutation(offspring, mutation_rate);
% 合并种群并选择顶部个体
combined_population = [population; offspring];
combined_fitness = zeros(num_individuals*2, 1);
for i = 1:num_individuals*2
combined_fitness(i) = calculate_fitness(combined_population(i, :), station_time, switch_time);
end
[sorted_fitness, sorted_indices] = sort(combined_fitness, 'descend');
top_individuals = combined_population(sorted_indices(1:num_individuals), :);
% 更新种群
population = top_individuals;
end
% 打印最佳个体
best_individual = population(1, :);
best_fitness = calculate_fitness(best_individual, station_time, switch_time);
disp(['最佳个体: ' num2str(best_individual)]);
disp(['适应度: ' num2str(best_fitness)]);
% 计算适应度的函数
function fitness = calculate_fitness(individual, station_time, switch_time)
num_stations = length(individual);
time = zeros(num_stations, 1);
time(1) = station_time(individual(1));
for i = 2:num_stations
time(i) = time(i-1) + switch_time(individual(i-1)) + station_time(individual(i));
end
fitness = 1 / max(time);
end
% 锦标赛选择函数
function parents = tournament_selection(population, fitness)
num_individuals = size(population, 1);
num_parents = size(population, 1) / 2;
parents = zeros(num_parents, size(population, 2));
for i = 1:num_parents
tournament_indices = randperm(num_individuals, 2);
tournament_fitness = fitness(tournament_indices);
[~, winner_index] = max(tournament_fitness);
winner_individual = population(tournament_indices(winner_index), :);
parents(i, :) = winner_individual;
end
end
% 交叉函数
function offspring = crossover(parents, crossover_rate)
num_parents = size(parents, 1);
num_genes = size(parents, 2);
offspring = zeros(num_parents, num_genes);
for i = 1:num_parents
if rand() < crossover_rate
partner_index = randperm(num_parents, 1);
parent_1 = parents(i, :);
parent_2 = parents(partner_index, :);
crossover_point = randi(num_genes-1);
offspring(i, 1:crossover_point) = parent_1(1:crossover_point);
offspring(i, crossover_point+1:end) = parent_2(crossover_point+1:end);
else
offspring(i, :) = parents(i, :);
end
end
end
% 变异函数
function mutated_offspring = mutation(offspring, mutation_rate)
num_offspring = size(offspring, 1);
num_genes = size(offspring, 2);
mutated_offspring = zeros(num_offspring, num_genes);
for i = 1:num_offspring
if rand() < mutation_rate
mutation_indices = randperm(num_genes, 2);
mutated_offspring(i, mutation_indices) = offspring(i, mutation_indices([2 1]));
else
mutated_offspring(i, :) = offspring(i, :);
end
end
end
```
该代码使用经典的遗传算法实现装配线平衡问题的优化。它定义了问题参数,如处理时间、切换时间、种群大小、变异率等。然后,它初始化种群,并在每个迭代中计算适应度、选择、交叉和变异。最后,它选择最佳个体并输出结果。请注意,这只是一个基本的实现,您可能需要根据您的具体问题进行调整和修改。
阅读全文