利用torch构建BiSRU-Attention模型的代码
时间: 2024-05-12 09:21:17 浏览: 137
以下是使用PyTorch构建BiSRU-Attention模型的示例代码:
```python
import torch
import torch.nn as nn
class BiSRUAttention(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout):
super(BiSRUAttention, self).__init__()
# BiSRU layers
self.sru = nn.ModuleList()
for i in range(num_layers):
if i == 0:
input_dim = input_size
else:
input_dim = hidden_size * 2
self.sru.append(nn.SRU(input_dim, hidden_size, num_layers=1, bidirectional=True))
# Attention layer
self.attention = nn.Linear(hidden_size * 2, 1)
# Dropout layer
self.dropout = nn.Dropout(p=dropout)
def forward(self, x):
# BiSRU layers
for sru_layer in self.sru:
x, _ = sru_layer(x)
# Attention layer
att_scores = self.attention(x)
att_scores = torch.softmax(att_scores, dim=1)
x = torch.sum(x * att_scores, dim=1)
# Dropout layer
x = self.dropout(x)
return x
```
该模型包含了BiSRU和Attention两个部分,其中BiSRU是由多个SRU层组成的双向循环神经网络,可以有效地捕捉序列中的上下文信息。而Attention层则通过计算每个时间步的权重,将BiSRU网络的输出进行加权平均,从而更加聚焦于重要的序列部分。
在初始化时,我们需要指定输入向量的大小(input_size)、隐层状态的大小(hidden_size)、SRU层数(num_layers)以及dropout概率(dropout)。在前向传播时,我们首先通过SRU层处理输入向量x,然后计算每个时间步的注意力得分,最后将得分与BiSRU网络的输出进行加权平均。
需要注意的是,在计算注意力得分时,我们使用了线性变换(nn.Linear)和softmax函数,以确保得分在0到1之间,且所有得分之和为1。同时,我们还添加了一个dropout层,以减少模型的过拟合风险。
阅读全文
相关推荐
















