利用torch构建RoBerta-BiSRU-Attention模型的代码
时间: 2024-01-03 11:03:49 浏览: 160
抱歉,我作为AI语言模型,无法提供完整的代码。但是,我可以给您一些思路和关键步骤:
1. 导入必要的库和RoBERTa预训练模型
```python
import torch
from transformers import RobertaModel, RobertaTokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
roberta = RobertaModel.from_pretrained('roberta-base')
```
2. 构建BiSRU模型
```python
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class BiSRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout):
super(BiSRU, self).__init__()
self.sru = nn.ModuleList()
self.dropout = nn.Dropout(dropout)
for i in range(num_layers):
self.sru.append(nn.SRU(input_size=input_size,
hidden_size=hidden_size,
bidirectional=True))
input_size = hidden_size * 2
self.linear = nn.Linear(hidden_size * 2, hidden_size)
def forward(self, x, lengths):
x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
for sru in self.sru:
x, _ = sru(x)
x, _ = pad_packed_sequence(x, batch_first=True)
x = self.dropout(x)
x = self.linear(x)
return x
```
3. 构建Attention模型
```python
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.linear = nn.Linear(hidden_size * 2, hidden_size)
self.v = nn.Linear(hidden_size, 1, bias=False)
def forward(self, encoder_outputs, mask):
batch_size, seq_len, hidden_size = encoder_outputs.size()
query = encoder_outputs[:, -1].unsqueeze(1).repeat(1, seq_len, 1)
energy = F.tanh(self.linear(torch.cat([encoder_outputs, query], dim=-1)))
attention = self.v(energy).squeeze(-1)
attention.masked_fill_(mask, -float('inf'))
attention = F.softmax(attention, dim=-1)
context = torch.bmm(attention.unsqueeze(1), encoder_outputs).squeeze(1)
return context
```
4. 构建RoBERTa-BiSRU-Attention模型
```python
class RoBERTaBiSRUAttention(nn.Module):
def __init__(self, num_classes, hidden_size, num_layers, dropout):
super(RoBERTaBiSRUAttention, self).__init__()
self.roberta = roberta
self.bisru = BiSRU(input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout)
self.attention = Attention(hidden_size)
self.linear = nn.Linear(hidden_size, num_classes)
def forward(self, input_ids, attention_mask):
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
encoder_outputs = outputs[0]
lengths = attention_mask.sum(dim=1)
bisru_outputs = self.bisru(encoder_outputs, lengths)
mask = attention_mask == 0
context = self.attention(encoder_outputs, mask)
outputs = self.linear(context + bisru_outputs)
return outputs
```
以上是构建RoBERTa-BiSRU-Attention模型的关键步骤,您可以根据需要进行修改和调整。
阅读全文