python 单列时间序列函数线性回归
时间: 2024-02-28 14:50:36 浏览: 233
Python中有多种库可以用于单变量时间序列的线性回归分析,其中比较常用的是statsmodels和scikit-learn库。
1. 使用statsmodels库进行线性回归分析:
首先,你需要导入statsmodels库和其他必要的库:
```python
import statsmodels.api as sm
import pandas as pd
import numpy as np
```
然后,你需要准备你的时间序列数据。假设你的时间序列数据存储在一个名为df的DataFrame中,其中包含两列:时间(日期或时间戳)和目标变量(要预测的值)。
接下来,你可以使用statsmodels的OLS(Ordinary Least Squares)函数来进行线性回归分析:
```python
X = sm.add_constant(df['时间']) # 添加常数列
y = df['目标变量']
model = sm.OLS(y, X)
results = model.fit()
```
最后,你可以通过访问results对象来获取回归结果的摘要信息:
```python
print(results.summary())
```
2. 使用scikit-learn库进行线性回归分析:
首先,你需要导入scikit-learn库和其他必要的库:
```python
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
```
然后,你需要准备你的时间序列数据。假设你的时间序列数据存储在一个名为df的DataFrame中,其中包含两列:时间(日期或时间戳)和目标变量(要预测的值)。
接下来,你可以创建一个LinearRegression对象并拟合你的数据:
```python
X = df['时间'].values.reshape(-1, 1) # 将时间转换为二维数组
y = df['目标变量']
model = LinearRegression()
model.fit(X, y)
```
最后,你可以通过访问model对象来获取回归结果的一些信息:
```python
print('斜率:', model.coef_)
print('截距:', model.intercept_)
```
阅读全文
相关推荐

















