pytorch实现把convlstm替换unet的concate操作的代码
时间: 2023-04-07 08:03:14 浏览: 197
基于Pytorch的UNet语义分割模型与代码
我可以回答这个问题。以下是一个示例代码,用于将ConvLSTM替换为UNet的Concat操作:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(ConvLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.padding = kernel_size // 2
self.conv = nn.Conv2d(in_channels=self.input_size + self.hidden_size,
out_channels=4 * self.hidden_size,
kernel_size=self.kernel_size,
padding=self.padding)
def forward(self, input_tensor, cur_state):
h_cur, c_cur = cur_state
combined = torch.cat([input_tensor, h_cur], dim=1)
combined_conv = self.conv(combined)
cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_size, dim=1)
i = torch.sigmoid(cc_i)
f = torch.sigmoid(cc_f)
o = torch.sigmoid(cc_o)
g = torch.tanh(cc_g)
c_next = f * c_cur + i * g
h_next = o * torch.tanh(c_next)
return h_next, c_next
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, padding=1)
self.upconv6 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.conv6 = nn.Conv2d(1024, 512, kernel_size=3, padding=1)
self.upconv7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv7 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.upconv8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv8 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.upconv9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv9 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
conv1 = F.relu(self.conv1(x))
conv2 = F.relu(self.conv2(F.max_pool2d(conv1, 2)))
conv3 = F.relu(self.conv3(F.max_pool2d(conv2, 2)))
conv4 = F.relu(self.conv4(F.max_pool2d(conv3, 2)))
conv5 = F.relu(self.conv5(F.max_pool2d(conv4, 2)))
upconv6 = self.upconv6(conv5)
concat6 = torch.cat([upconv6, conv4], dim=1)
conv6 = F.relu(self.conv6(concat6))
upconv7 = self.upconv7(conv6)
concat7 = torch.cat([upconv7, conv3], dim=1)
conv7 = F.relu(self.conv7(concat7))
upconv8 = self.upconv8(conv7)
concat8 = torch.cat([upconv8, conv2], dim=1)
conv8 = F.relu(self.conv8(concat8))
upconv9 = self.upconv9(conv8)
concat9 = torch.cat([upconv9, conv1], dim=1)
conv9 = F.relu(self.conv9(concat9))
out = self.conv10(conv9)
return out
# Replace UNet's Concat operation with ConvLSTM
class ConvLSTMUNet(nn.Module):
def __init__(self, in_channels, out_channels, hidden_size, kernel_size):
super(ConvLSTMUNet, self).__init__()
self.unet = UNet(in_channels, out_channels)
self.convlstm = ConvLSTM(out_channels, hidden_size, kernel_size)
def forward(self, x, cur_state):
unet_out = self.unet(x)
lstm_out, lstm_state = self.convlstm(unet_out, cur_state)
return lstm_out, lstm_state
```
这个代码将UNet的Concat操作替换为ConvLSTM。如果您有任何疑问,请随时问我。
阅读全文