用python用动态规划法求TSP问题代码
时间: 2024-05-12 09:17:41 浏览: 78
以下是一个采用动态规划法求解TSP问题的Python代码:
```python
import math
import itertools
# 计算两点之间的距离
def dist(p1, p2):
return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
# 计算点集之间最短距离
def tsp(points):
n = len(points)
dp = [[float('inf')]*(n-1) for _ in range(1<<n-1)]
for i in range(n-1):
dp[1<<i][i] = dist(points[0], points[i+1])
for s in range(1<<n-1):
for i in range(n-1):
if s&(1<<i):
for j in range(n-1):
if i!=j and (s&(1<<j)):
dp[s][i] = min(dp[s][i], dp[s^(1<<i)][j]+dist(points[0], points[i+1])+dist(points[i+1], points[j+1]))
res = float('inf')
for i in range(n-1):
res = min(res, dp[(1<<n-1)-1][i]+dist(points[0], points[i+1]))
return res
# 测试
points = [(0,0), (1,1), (2,2), (3,3), (2,0)]
print(tsp(points))
```
如果您有更多问题,欢迎继续提问。
阅读全文