基于马氏距离的DBSCAN聚类算法的matlab代码
时间: 2023-08-13 11:07:58 浏览: 137
以下是基于马氏距离的DBSCAN聚类算法的Matlab代码示例:
```matlab
function [labels, numClusters] = DBSCAN_Mahalanobis(data, epsilon, minPts)
numPoints = size(data, 1);
labels = zeros(numPoints, 1);
numClusters = 0;
for i = 1:numPoints
if labels(i) == 0
neighbors = regionQuery(data, i, epsilon);
if numel(neighbors) < minPts
labels(i) = -1; % Noise point
else
numClusters = numClusters + 1;
expandCluster(data, labels, i, neighbors, numClusters, epsilon, minPts);
end
end
end
end
function expandCluster(data, labels, pointIdx, neighbors, clusterIdx, epsilon, minPts)
labels(pointIdx) = clusterIdx;
k = 1;
while k <= numel(neighbors)
nextIdx = neighbors(k);
if labels(nextIdx) == -1 % Noise point previously labeled as noise
labels(nextIdx) = clusterIdx;
elseif labels(nextIdx) == 0 % Unclassified point
labels(nextIdx) = clusterIdx;
nextNeighbors = regionQuery(data, nextIdx, epsilon);
if numel(nextNeighbors) >= minPts
neighbors = [neighbors; nextNeighbors];
end
end
k = k + 1;
end
end
function neighbors = regionQuery(data, pointIdx, epsilon)
distanceMatrix = pdist2(data, data(pointIdx,:), 'mahalanobis');
neighbors = find(distanceMatrix <= epsilon);
end
```
此代码实现了基于马氏距离的DBSCAN聚类算法。`DBSCAN_Mahalanobis` 函数是主函数,接受数据集 `data`、邻域半径 `epsilon` 和最小邻域点数 `minPts` 作为输入,并返回每个数据点的簇标签和聚类数量。`expandCluster` 函数用于扩展聚类,`regionQuery` 函数用于找到给定点的邻域点。
请注意,此代码仅为示例,可能需要根据具体问题进行适当修改和调整。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)