import numpy as np # b = np.load("train_od_3936_109_109.npy") # print(b) c = np.load("X_od.npy") D = np.load("Y_od.npy") print(c.shape) print(D.shape) max=np.max(c) train_x=c[0:1000]/max train_y=D[0:1000]/max val_x=c[1000:1150]/max val_y=D[1000:1150]/max test_x=c[1150:]/max twst_y=D[1150:] print(train_x.shape) # print(D.shape) print(val_x.shape) # print(D.shape) print(test_x.shape) # print(D.shape) from keras.layers import Dense, LSTM, ConvLSTM2D, Dropout, Reshape from keras.models import Sequential model = Sequential() model.add(Reshape((5,109,109,1),input_shape=(5,109,109))) model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same',input_shape=(5, 109, 109, 1))) # model.add(Dropout(0.2)) model.add(Dense(1)) # 在Dense层中,输出维度应该是(109, 109, 1),而不是1 model.add(Reshape((109, 109))) # 在Reshape层中,输出维度应该是(109, 109)而不是(5, 109, 109)。 model.summary() model.compile(optimizer='adam', loss='mse') history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) #第三个版本 model.compile(optimizer='adam', loss='mae') import matplotlib.pyplot as plt # 预测结果 predictions = model.predict(test_x) # 可视化输出 for i in range(predictions.shape[0]): plt.subplot(1, 2, 1) plt.imshow(test_x[i][-1], cmap='gray') plt.title('Input Image') plt.subplot(1, 2, 2) plt.imshow(predictions[i], cmap='gray') plt.title('Predicted Image') plt.show()如何在这一段程序上增添代码使得整体预测更加完善

时间: 2023-06-20 19:09:40 浏览: 49
有很多方法可以改进整体预测的完善程度,以下是一些可能有用的建议: 1. 增加模型复杂度:你的模型目前只有一个ConvLSTM2D层和一个Dense层,这可能不足以捕捉数据集中的复杂模式。你可以尝试增加层数、增加每层的节点数、使用其他类型的层等,以提高模型的表现。 2. 调整超参数:例如,你可以尝试不同的优化器、学习率、批量大小、训练时的迭代次数等,以找到最佳的超参数组合。 3. 数据增强:你可以通过旋转、平移、缩放等方式增强数据集,以提高模型的泛化能力和鲁棒性。 4. 使用预训练模型:如果你的数据集与现有的某些数据集相似,你可以尝试使用预训练的模型,然后微调它们以适应你的数据集。 5. 使用集成方法:你可以尝试使用多个模型进行集成,以提高整体预测的准确性。例如,可以使用不同的初始化或超参数训练多个模型,并将它们的预测结果平均或投票,以得到最终的预测结果。 6. 对数据集进行更深入的分析:你可以对数据集进行更深入的分析,以了解数据集中的特点、异常值和异常点,并针对这些特点调整模型。
相关问题

import numpy as np # b = np.load("train_od_3936_109_109.npy") # print(b) c = np.load("X_od.npy") D = np.load("Y_od.npy") print(c.shape) print(D.shape) max=np.max(c) train_x=c[0:1000]/max train_y=D[0:1000]/max val_x=c[1000:1150]/max val_y=D[1000:1150]/max test_x=c[1150:]/max twst_y=D[1150:] print(train_x.shape) # print(D.shape) print(val_x.shape) # print(D.shape) print(test_x.shape) # print(D.shape) from keras.layers import Dense, LSTM, ConvLSTM2D, Dropout, Reshape from keras.models import Sequential model = Sequential() model.add(Reshape((5,109,109,1),input_shape=(5,109,109))) model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same',input_shape=(5, 109, 109, 1))) # model.add(Dropout(0.2)) model.add(Dense(1)) # 在Dense层中,输出维度应该是(109, 109, 1),而不是1 model.add(Reshape((109, 109))) # 在Reshape层中,输出维度应该是(109, 109)而不是(5, 109, 109)。 model.summary() model.compile(optimizer='adam', loss='mse') history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False)该段程序怎么改为以LSTM神经网络模型的地铁客流预测和预测结果可视化代码

import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense, LSTM, Dropout, Reshape from keras.models import Sequential # 加载数据 c = np.load("X_od.npy") D = np.load("Y_od.npy") max_val = np.max(c) train_x = c[:1000] / max_val train_y = D[:1000] / max_val val_x = c[1000:1150] / max_val val_y = D[1000:1150] / max_val test_x = c[1150:] / max_val test_y = D[1150:] / max_val # LSTM神经网络模型 model = Sequential() model.add(LSTM(units=64, input_shape=(5, 109), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=32)) model.add(Dense(units=109, activation='linear')) model.summary() model.compile(optimizer='adam', loss='mse') # 模型训练 history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) # 模型预测 train_predict = model.predict(train_x) val_predict = model.predict(val_x) test_predict = model.predict(test_x) # 预测结果可视化 plt.figure(figsize=(20, 8)) plt.plot(train_y[-100:], label='true') plt.plot(train_predict[-100:], label='predict') plt.legend() plt.title('Training set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(val_y[-50:], label='true') plt.plot(val_predict[-50:], label='predict') plt.legend() plt.title('Validation set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(test_y[:50], label='true') plt.plot(test_predict[:50], label='predict') plt.legend() plt.title('Test set') plt.show()

from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels #PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.fit_transform(X_test) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒")优化这段代码,输出其中pca降维的因子负荷量

可以优化代码如下: ``` from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels # PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # 输出因子负荷量 print("PCA降维后的因子负荷量为:") print(pca.components_) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒") ``` 输出结果中包含了PCA降维后的因子负荷量,即`pca.components_`。

相关推荐

import numpy as np import matplotlib.pyplot as plt from keras.layers import Dense,LSTM,Dropout from keras.models import Sequential # 加载数据 X = np.load("X_od.npy") Y = np.load("Y_od.npy") # 数据归一化 max = np.max(X) X = X / max Y = Y / max # 划分训练集、验证集、测试集 train_x = X[:1000] train_y = Y[:1000] val_x = X[1000:1150] val_y = Y[1000:1150] test_x = X[1150:] test_y = Y # 构建LSTM模型 model = Sequential() model.add(LSTM(units=64, input_shape=(5, 109))) model.add(Dropout(0.2)) model.add(Dense(units=109, activation='linear')) model.summary() # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) # 评估模型 test_loss = model.evaluate(test_x, test_y) print('Test loss:', test_loss) # 模型预测 train_predict = model.predict(train_x) val_predict = model.predict(val_x) test_predict = model.predict(test_x) # 预测结果可视化 plt.figure(figsize=(20, 8)) plt.plot(train_y[-100:], label='true') plt.plot(train_predict[-100:], label='predict') plt.legend() plt.title('Training set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(val_y[-50:], label='true') plt.plot(val_predict[-50:], label='predict') plt.legend() plt.title('Validation set') plt.show() plt.figure(figsize=(20, 8)) plt.plot(test_y[:50], label='true') plt.plot(test_predict[:50], label='predict') plt.legend() plt.title('Test set') plt.show()如何用返回序列修改这段程序

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

JavaScript_超过100种语言的纯Javascript OCR.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这