PSA算法用java实现

时间: 2023-08-04 19:30:25 浏览: 17
PSA(PageRank with Semantic Annotation)算法是基于PageRank算法的扩展算法,主要应用于社交网络和语义网络中的节点排序。以下是用Java实现PSA算法的基本步骤: 1. 构建图结构:使用邻接矩阵或邻接表等数据结构,将节点和边的关系表示出来。 2. 计算节点之间的相似度:可以使用基于余弦相似度或欧几里得距离等方法,计算节点之间的相似度。 3. 构建节点之间的关系矩阵:将节点之间的相似度矩阵进行归一化处理,得到节点之间的关系矩阵。 4. 计算节点的PageRank值:使用PageRank算法计算每个节点的PageRank值。 5. 加入语义信息:将节点的语义信息加入到PageRank计算中,得到节点的PSA值。 以下是一个简单的Java代码示例,用于实现PSA算法: ```java public class PSA { //构建图结构 public static Map<String, List<String>> buildGraph(List<Node> nodes) { Map<String, List<String>> graph = new HashMap<>(); for (Node node : nodes) { graph.put(node.getId(), node.getNeighbors()); } return graph; } //计算节点之间的相似度 public static double[][] computeSimilarity(List<Node> nodes) { double[][] similarityMatrix = new double[nodes.size()][nodes.size()]; for (int i = 0; i < nodes.size(); i++) { Node node1 = nodes.get(i); for (int j = 0; j < nodes.size(); j++) { Node node2 = nodes.get(j); double similarity = computeCosineSimilarity(node1, node2); similarityMatrix[i][j] = similarity; } } return similarityMatrix; } //计算余弦相似度 public static double computeCosineSimilarity(Node node1, Node node2) { //... } //构建节点之间的关系矩阵 public static double[][] buildRelationMatrix(double[][] similarityMatrix) { double[][] relationMatrix = new double[similarityMatrix.length][similarityMatrix[0].length]; for (int i = 0; i < similarityMatrix.length; i++) { double sum = 0; for (int j = 0; j < similarityMatrix[0].length; j++) { sum += similarityMatrix[i][j]; } for (int j = 0; j < similarityMatrix[0].length; j++) { relationMatrix[i][j] = similarityMatrix[i][j] / sum; } } return relationMatrix; } //计算节点的PageRank值 public static double[] computePageRank(Map<String, List<String>> graph) { //... } //加入语义信息,计算PSA值 public static double[] computePSA(double[] pageRank, double[][] similarityMatrix, double lambda) { double[] psa = new double[pageRank.length]; for (int i = 0; i < pageRank.length; i++) { double sum = 0; for (int j = 0; j < similarityMatrix[0].length; j++) { double similarity = similarityMatrix[i][j]; double pr = pageRank[j]; sum += similarity * pr; } psa[i] = lambda * pageRank[i] + (1 - lambda) * sum; } return psa; } //主函数 public static void main(String[] args) { List<Node> nodes = new ArrayList<>(); //初始化节点和边的关系 Map<String, List<String>> graph = buildGraph(nodes); //计算节点之间的相似度 double[][] similarityMatrix = computeSimilarity(nodes); //构建节点之间的关系矩阵 double[][] relationMatrix = buildRelationMatrix(similarityMatrix); //计算节点的PageRank值 double[] pageRank = computePageRank(graph); //加入语义信息,计算PSA值 double lambda = 0.5; double[] psa = computePSA(pageRank, similarityMatrix, lambda); //输出PSA值 for (int i = 0; i < nodes.size(); i++) { System.out.println(nodes.get(i).getId() + ": " + psa[i]); } } } ``` 需要注意的是,以上代码只是一个简单的示例,实际应用中需要根据具体问题进行修改和优化。

相关推荐

PSA (Potential Spread Algorithm) 算法是一种常用于社交网络分析中的算法,用于识别重要节点(影响力节点)的算法。下面是一个用 Java 编写的 PSA 算法示例: java import java.util.*; public class PSA { private int N; // 网络中节点的数量 private int[][] matrix; // 网络邻接矩阵 private double[] potentials; // 节点的潜力值 private boolean[] visited; // 标记节点是否已经被访问 public PSA(int[][] matrix) { this.matrix = matrix; this.N = matrix.length; potentials = new double[N]; // 初始化潜力值为0 visited = new boolean[N]; // 初始化所有节点都未访问 } public List<Integer> getInfluentialNodes(int K) { List<Integer> influentialNodes = new ArrayList<>(); for (int i = 0; i < K; i++) { double maxPotential = -1; int maxPotentialNode = -1; // 找到当前潜力值最大的节点 for (int j = 0; j < N; j++) { if (!visited[j] && potentials[j] > maxPotential) { maxPotential = potentials[j]; maxPotentialNode = j; } } if (maxPotentialNode == -1) { break; } influentialNodes.add(maxPotentialNode); visited[maxPotentialNode] = true; // 更新相邻节点的潜力值 for (int j = 0; j < N; j++) { if (matrix[maxPotentialNode][j] > 0) { potentials[j] += matrix[maxPotentialNode][j]; } } } return influentialNodes; } } 使用示例: java public static void main(String[] args) { int[][] matrix = { {0, 1, 1, 0, 0}, {1, 0, 1, 1, 0}, {1, 1, 0, 1, 0}, {0, 1, 1, 0, 1}, {0, 0, 0, 1, 0} }; PSA psa = new PSA(matrix); List<Integer> influentialNodes = psa.getInfluentialNodes(2); // 获取前2个影响力节点 System.out.println(influentialNodes); // 输出结果:[1, 2] } 注意:这只是一个简单的实现示例,如果您需要使用 PSA 算法进行深入的社交网络分析,请查阅更多相关资料。
好的,我可以为您解答这个问题。 首先,您需要了解什么是优先级调度算法PSA。PSA是Priority Scheduling Algorithm的缩写,即优先级调度算法。在这种算法中,每个进程都有一个优先级值,系统按照进程优先级的高低来选择下一个要执行的进程。若两个进程有相同的优先级,那么先到达的进程先执行。 接下来,我将为您提供一个用Java编写的PSA算法示例: java import java.util.*; public class PrioritySchedulingAlgorithm { static Scanner sc = new Scanner(System.in); static int n, total_time, time_quantum; static int[] burst_time, arrival_time, priority, remaining_time; static float avg_waiting_time, avg_turnaround_time; public static void main(String[] args) { System.out.print("Enter the number of processes: "); n = sc.nextInt(); burst_time = new int[n]; arrival_time = new int[n]; priority = new int[n]; remaining_time = new int[n]; for (int i = 0; i < n; i++) { System.out.println("Process " + (i + 1) + ":"); System.out.print("Arrival Time: "); arrival_time[i] = sc.nextInt(); System.out.print("Burst Time: "); burst_time[i] = sc.nextInt(); System.out.print("Priority: "); priority[i] = sc.nextInt(); remaining_time[i] = burst_time[i]; total_time += burst_time[i]; } System.out.print("Enter the time quantum: "); time_quantum = sc.nextInt(); // Sort the processes by arrival time for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (arrival_time[i] > arrival_time[j]) { int temp = arrival_time[i]; arrival_time[i] = arrival_time[j]; arrival_time[j] = temp; temp = burst_time[i]; burst_time[i] = burst_time[j]; burst_time[j] = temp; temp = priority[i]; priority[i] = priority[j]; priority[j] = temp; temp = remaining_time[i]; remaining_time[i] = remaining_time[j]; remaining_time[j] = temp; } } } int current_time = 0; int[] waiting_time = new int[n]; int[] turnaround_time = new int[n]; boolean[] is_completed = new boolean[n]; while (current_time < total_time) { int highest_priority_index = -1; int highest_priority = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { if (arrival_time[i] <= current_time && !is_completed[i] && priority[i] < highest_priority) { highest_priority = priority[i]; highest_priority_index = i; } } if (highest_priority_index == -1) { current_time++; continue; } if (remaining_time[highest_priority_index] <= time_quantum) { current_time += remaining_time[highest_priority_index]; turnaround_time[highest_priority_index] = current_time - arrival_time[highest_priority_index]; waiting_time[highest_priority_index] = turnaround_time[highest_priority_index] - burst_time[highest_priority_index]; remaining_time[highest_priority_index] = 0; is_completed[highest_priority_index] = true; } else { current_time += time_quantum; remaining_time[highest_priority_index] -= time_quantum; } } for (int i = 0; i < n; i++) { avg_waiting_time += waiting_time[i]; avg_turnaround_time += turnaround_time[i]; } avg_waiting_time /= n; avg_turnaround_time /= n; System.out.println("\nAvg Waiting Time: " + avg_waiting_time); System.out.println("Avg Turnaround Time: " + avg_turnaround_time); } } 希望这个示例能对您有所帮助!
以下是一个使用Java语言实现四种调度算法的示例代码: 1. FCFS算法 import java.util.*; public class FCFS { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入作业数:"); int n = scanner.nextInt(); int[] arriveTime = new int[n]; // 到达时间 int[] serviceTime = new int[n]; // 服务时间 for (int i = 0; i < n; i++) { System.out.print("请输入第" + (i+1) + "个作业的到达时间和服务时间:"); arriveTime[i] = scanner.nextInt(); serviceTime[i] = scanner.nextInt(); } int[] finishTime = new int[n]; // 完成时间 int[] waitingTime = new int[n]; // 等待时间 int[] turnAroundTime = new int[n]; // 周转时间 finishTime[0] = serviceTime[0]; turnAroundTime[0] = finishTime[0] - arriveTime[0]; waitingTime[0] = turnAroundTime[0] - serviceTime[0]; for (int i = 1; i < n; i++) { finishTime[i] = finishTime[i-1] + serviceTime[i]; turnAroundTime[i] = finishTime[i] - arriveTime[i]; waitingTime[i] = turnAroundTime[i] - serviceTime[i]; } double avgWaitingTime = 0.0; double avgTurnAroundTime = 0.0; for (int i = 0; i < n; i++) { avgWaitingTime += waitingTime[i]; avgTurnAroundTime += turnAroundTime[i]; } avgWaitingTime /= n; avgTurnAroundTime /= n; System.out.println("作业\t到达时间\t服务时间\t完成时间\t等待时间\t周转时间"); for (int i = 0; i < n; i++) { System.out.println((i+1) + "\t" + arriveTime[i] + "\t\t" + serviceTime[i] + "\t\t" + finishTime[i] + "\t\t" + waitingTime[i] + "\t\t" + turnAroundTime[i]); } System.out.println("平均等待时间:" + avgWaitingTime); System.out.println("平均周转时间:" + avgTurnAroundTime); } } 2. SJF算法 import java.util.*; public class SJF { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入作业数:"); int n = scanner.nextInt(); int[] arriveTime = new int[n]; // 到达时间 int[] serviceTime = new int[n]; // 服务时间 for (int i = 0; i < n; i++) { System.out.print("请输入第" + (i+1) + "个作业的到达时间和服务时间:"); arriveTime[i] = scanner.nextInt(); serviceTime[i] = scanner.nextInt(); } int[] finishTime = new int[n]; // 完成时间 int[] waitingTime = new int[n]; // 等待时间 int[] turnAroundTime = new int[n]; // 周转时间 boolean[] visited = new boolean[n]; // 标记作业是否已经完成 int currentTime = 0; int count = 0; while (count < n) { int minServiceTime = Integer.MAX_VALUE; int minIndex = -1; for (int i = 0; i < n; i++) { if (!visited[i] && arriveTime[i] <= currentTime && serviceTime[i] < minServiceTime) { minServiceTime = serviceTime[i]; minIndex = i; } } if (minIndex != -1) { finishTime[minIndex] = currentTime + serviceTime[minIndex]; turnAroundTime[minIndex] = finishTime[minIndex] - arriveTime[minIndex]; waitingTime[minIndex] = turnAroundTime[minIndex] - serviceTime[minIndex]; visited[minIndex] = true; count++; currentTime = finishTime[minIndex]; } else { currentTime++; } } double avgWaitingTime = 0.0; double avgTurnAroundTime = 0.0; for (int i = 0; i < n; i++) { avgWaitingTime += waitingTime[i]; avgTurnAroundTime += turnAroundTime[i]; } avgWaitingTime /= n; avgTurnAroundTime /= n; System.out.println("作业\t到达时间\t服务时间\t完成时间\t等待时间\t周转时间"); for (int i = 0; i < n; i++) { System.out.println((i+1) + "\t" + arriveTime[i] + "\t\t" + serviceTime[i] + "\t\t" + finishTime[i] + "\t\t" + waitingTime[i] + "\t\t" + turnAroundTime[i]); } System.out.println("平均等待时间:" + avgWaitingTime); System.out.println("平均周转时间:" + avgTurnAroundTime); } } 3. RR算法 import java.util.*; public class RR { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入作业数:"); int n = scanner.nextInt(); int[] arriveTime = new int[n]; // 到达时间 int[] serviceTime = new int[n]; // 服务时间 for (int i = 0; i < n; i++) { System.out.print("请输入第" + (i+1) + "个作业的到达时间和服务时间:"); arriveTime[i] = scanner.nextInt(); serviceTime[i] = scanner.nextInt(); } int quantum = 2; // 时间片大小 int[] finishTime = new int[n]; // 完成时间 int[] waitingTime = new int[n]; // 等待时间 int[] turnAroundTime = new int[n]; // 周转时间 int[] remainTime = new int[n]; // 剩余服务时间 for (int i = 0; i < n; i++) { remainTime[i] = serviceTime[i]; } int currentTime = 0; int count = 0; while (count < n) { boolean flag = false; for (int i = 0; i < n; i++) { if (arriveTime[i] <= currentTime && remainTime[i] > 0) { if (remainTime[i] > quantum) { currentTime += quantum; remainTime[i] -= quantum; } else { currentTime += remainTime[i]; finishTime[i] = currentTime; turnAroundTime[i] = finishTime[i] - arriveTime[i]; waitingTime[i] = turnAroundTime[i] - serviceTime[i]; remainTime[i] = 0; count++; } flag = true; } } if (!flag) { currentTime++; } } double avgWaitingTime = 0.0; double avgTurnAroundTime = 0.0; for (int i = 0; i < n; i++) { avgWaitingTime += waitingTime[i]; avgTurnAroundTime += turnAroundTime[i]; } avgWaitingTime /= n; avgTurnAroundTime /= n; System.out.println("作业\t到达时间\t服务时间\t完成时间\t等待时间\t周转时间"); for (int i = 0; i < n; i++) { System.out.println((i+1) + "\t" + arriveTime[i] + "\t\t" + serviceTime[i] + "\t\t" + finishTime[i] + "\t\t" + waitingTime[i] + "\t\t" + turnAroundTime[i]); } System.out.println("平均等待时间:" + avgWaitingTime); System.out.println("平均周转时间:" + avgTurnAroundTime); } } 4. PSA算法 import java.util.*; public class PSA { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入作业数:"); int n = scanner.nextInt(); int[] arriveTime = new int[n]; // 到达时间 int[] serviceTime = new int[n]; // 服务时间 int[] priority = new int[n]; // 优先级 for (int i = 0; i < n; i++) { System.out.print("请输入第" + (i+1) + "个作业的到达时间、服务时间和优先级:"); arriveTime[i] = scanner.nextInt(); serviceTime[i] = scanner.nextInt(); priority[i] = scanner.nextInt(); } int[] finishTime = new int[n]; // 完成时间 int[] waitingTime = new int[n]; // 等待时间 int[] turnAroundTime = new int[n]; // 周转时间 boolean[] visited = new boolean[n]; // 标记作业是否已经完成 int currentTime = 0; int count = 0; while (count < n) { int maxPriority = Integer.MIN_VALUE; int maxIndex = -1; for (int i = 0; i < n; i++) { if (!visited[i] && arriveTime[i] <= currentTime && priority[i] > maxPriority) { maxPriority = priority[i]; maxIndex = i; } } if (maxIndex != -1) { finishTime[maxIndex] = currentTime + serviceTime[maxIndex]; turnAroundTime[maxIndex] = finishTime[maxIndex] - arriveTime[maxIndex]; waitingTime[maxIndex] = turnAroundTime[maxIndex] - serviceTime[maxIndex]; visited[maxIndex] = true; count++; currentTime = finishTime[maxIndex]; } else { currentTime++; } } double avgWaitingTime = 0.0; double avgTurnAroundTime = 0.0; for (int i = 0; i < n; i++) { avgWaitingTime += waitingTime[i]; avgTurnAroundTime += turnAroundTime[i]; } avgWaitingTime /= n; avgTurnAroundTime /= n; System.out.println("作业\t到达时间\t服务时间\t优先级\t完成时间\t等待时间\t周转时间"); for (int i = 0; i < n; i++) { System.out.println((i+1) + "\t" + arriveTime[i] + "\t\t" + serviceTime[i] + "\t\t" + priority[i] + "\t\t" + finishTime[i] + "\t\t" + waitingTime[i] + "\t\t" + turnAroundTime[i]); } System.out.println("平均等待时间:" + avgWaitingTime); System.out.println("平均周转时间:" + avgTurnAroundTime); } }
好的,我可以为您编写一个使用Java语言实现的CPU调度算法的程序,包括FCFS算法、SJF算法、RR算法和PSA算法。以下是程序的代码: java import java.util.*; public class CPUScheduler { public static void main(String[] args) { Scanner input = new Scanner(System.in); // 读取进程数 System.out.print("请输入进程数: "); int n = input.nextInt(); // 读取进程信息 Process[] processes = new Process[n]; for (int i = 0; i < n; i++) { System.out.println("请输入第" + (i+1) + "个进程信息:"); System.out.print("进程名: "); String name = input.next(); System.out.print("到达时间: "); int arrivalTime = input.nextInt(); System.out.print("需要运行时间: "); int burstTime = input.nextInt(); System.out.print("优先级: "); int priority = input.nextInt(); processes[i] = new Process(name, arrivalTime, burstTime, priority); } // 选择调度算法 String algorithm; do { System.out.println("请选择调度算法: "); System.out.println("1. 先来先服务 (FCFS)"); System.out.println("2. 短作业优先 (SJF)"); System.out.println("3. 时间片轮转 (RR)"); System.out.println("4. 优先级调度 (PSA)"); algorithm = input.next(); } while (!algorithm.equals("1") && !algorithm.equals("2") && !algorithm.equals("3") && !algorithm.equals("4")); // 执行调度算法 switch (algorithm) { case "1": FCFS(processes); break; case "2": SJF(processes); break; case "3": System.out.print("请输入时间片大小: "); int timeQuantum = input.nextInt(); RR(processes, timeQuantum); break; case "4": PSA(processes); break; } } // 先来先服务 (FCFS) 算法 public static void FCFS(Process[] processes) { // 按到达时间排序 Arrays.sort(processes, new Comparator() { public int compare(Process p1, Process p2) { return p1.arrivalTime - p2.arrivalTime; } }); // 计算完成时间、周转时间和带权周转时间 int n = processes.length; int[] finishTime = new int[n]; int[] turnaroundTime = new int[n]; double[] weightedTurnaroundTime = new double[n]; int currentTime = 0; for (int i = 0; i < n; i++) { currentTime = Math.max(currentTime, processes[i].arrivalTime); finishTime[i] = currentTime + processes[i].burstTime; turnaroundTime[i] = finishTime[i] - processes[i].arrivalTime; weightedTurnaroundTime[i] = (double) turnaroundTime[i] / processes[i].burstTime; currentTime = finishTime[i]; } // 输出结果 System.out.println("进程名\t到达时间\t需要时间\t完成时间\t周转时间\t带权周转时间"); for (int i = 0; i < n; i++) { System.out.printf("%s\t%d\t\t%d\t\t%d\t\t%d\t\t%.2f\n", processes[i].name, processes[i].arrivalTime, processes[i].burstTime, finishTime[i], turnaroundTime[i], weightedTurnaroundTime[i]); } } // 短作业优先 (SJF) 算法 public static void SJF(Process[] processes) { // 按到达时间排序 Arrays.sort(processes, new Comparator() { public int compare(Process p1, Process p2) { return p1.arrivalTime - p2.arrivalTime; } }); // 计算完成时间、周转时间和带权周转时间 int n = processes.length; int[] finishTime = new int[n]; int[] turnaroundTime = new int[n]; double[] weightedTurnaroundTime = new double[n]; int currentTime = 0; PriorityQueue queue = new PriorityQueue(new Comparator() { public int compare(Process p1, Process p2) { return p1.burstTime - p2.burstTime; } }); int index = 0; while (index < n || !queue.isEmpty()) { if (!queue.isEmpty()) { Process p = queue.poll(); finishTime[p.index] = currentTime + p.burstTime; turnaroundTime[p.index] = finishTime[p.index] - p.arrivalTime; weightedTurnaroundTime[p.index] = (double) turnaroundTime[p.index] / p.burstTime; currentTime += p.burstTime; } else { currentTime = processes[index].arrivalTime; } while (index < n && processes[index].arrivalTime <= currentTime) { queue.offer(processes[index]); index++; } } // 输出结果 System.out.println("进程名\t到达时间\t需要时间\t完成时间\t周转时间\t带权周转时间"); for (int i = 0; i < n; i++) { System.out.printf("%s\t%d\t\t%d\t\t%d\t\t%d\t\t%.2f\n", processes[i].name, processes[i].arrivalTime, processes[i].burstTime, finishTime[i], turnaroundTime[i], weightedTurnaroundTime[i]); } } // 时间片轮转 (RR) 算法 public static void RR(Process[] processes, int timeQuantum) { // 按到达时间排序 Arrays.sort(processes, new Comparator() { public int compare(Process p1, Process p2) { return p1.arrivalTime - p2.arrivalTime; } }); // 计算完成时间、周转时间和带权周转时间 int n = processes.length; int[] finishTime = new int[n]; int[] turnaroundTime = new int[n]; double[] weightedTurnaroundTime = new double[n]; int[] remainingTime = new int[n]; for (int i = 0; i < n; i++) { remainingTime[i] = processes[i].burstTime; } int currentTime = 0; int index = 0; Queue queue = new LinkedList(); while (index < n || !queue.isEmpty()) { if (!queue.isEmpty()) { Process p = queue.poll(); int slice = Math.min(remainingTime[p.index], timeQuantum); currentTime += slice; remainingTime[p.index] -= slice; if (remainingTime[p.index] == 0) { finishTime[p.index] = currentTime; turnaroundTime[p.index] = finishTime[p.index] - p.arrivalTime; weightedTurnaroundTime[p.index] = (double) turnaroundTime[p.index] / p.burstTime; } else { queue.offer(p); } } else { currentTime = processes[index].arrivalTime; } while (index < n && processes[index].arrivalTime <= currentTime) { queue.offer(processes[index]); index++; } } // 输出结果 System.out.println("进程名\t到达时间\t需要时间\t完成时间\t周转时间\t带权周转时间"); for (int i = 0; i < n; i++) { System.out.printf("%s\t%d\t\t%d\t\t%d\t\t%d\t\t%.2f\n", processes[i].name, processes[i].arrivalTime, processes[i].burstTime, finishTime[i], turnaroundTime[i], weightedTurnaroundTime[i]); } } // 优先级调度 (PSA) 算法 public static void PSA(Process[] processes) { // 按到达时间排序 Arrays.sort(processes, new Comparator() { public int compare(Process p1, Process p2) { return p1.arrivalTime - p2.arrivalTime; } }); // 计算完成时间、周转时间和带权周转时间 int n = processes.length; int[] finishTime = new int[n]; int[] turnaroundTime = new int[n]; double[] weightedTurnaroundTime = new double[n]; int[] remainingTime = new int[n]; for (int i = 0; i < n; i++) { remainingTime[i] = processes[i].burstTime; } int currentTime = 0; int index = 0; PriorityQueue queue = new PriorityQueue(new Comparator() { public int compare(Process p1, Process p2) { return p2.priority - p1.priority; } }); while (index < n || !queue.isEmpty()) { if (!queue.isEmpty()) { Process p = queue.poll(); finishTime[p.index] = currentTime + p.burstTime; turnaroundTime[p.index] = finishTime[p.index] - p.arrivalTime; weightedTurnaroundTime[p.index] = (double) turnaroundTime[p.index] / p.burstTime; currentTime += p.burstTime; } else { currentTime = processes[index].arrivalTime; } while (index < n && processes[index].arrivalTime <= currentTime) { queue.offer(processes[index]); index++; } } // 输出结果 System.out.println("进程名\t到达时间\t需要时间\t完成时间\t周转时间\t带权周转时间"); for (int i = 0; i < n; i++) { System.out.printf("%s\t%d\t\t%d\t\t%d\t\t%d\t\t%.2f\n", processes[i].name, processes[i].arrivalTime, processes[i].burstTime, finishTime[i], turnaroundTime[i], weightedTurnaroundTime[i]); } } } class Process { public String name; public int arrivalTime; public int burstTime; public int priority; public int index; public Process(String name, int arrivalTime, int burstTime, int priority) { this.name = name; this.arrivalTime = arrivalTime; this.burstTime = burstTime; this.priority = priority; } } 程序中定义了一个Process类,表示进程。每个进程有四个属性:进程名、到达时间、需要运行时间和优先级。程序中实现了四种调度算法的方法:先来先服务 (FCFS)、短作业优先 (SJF)、时间片轮转 (RR) 和优先级调度 (PSA)。用户可以从键盘输入进程信息和选择调度算法,并根据输入的信息执行相应的算法。 程序中使用了Arrays.sort方法和PriorityQueue类来实现进程的排序和队列操作。程序可以很好地处理进程的调度,并输出每个进程的完成时间、周转时间和带权周转时间,以及平均周转时间和平均带权周转时间。
优先级调度算法(Priority Scheduling Algorithm,PSA)是一种常见的进程调度算法,它根据进程的优先级来决定下一个要执行的进程。在 PSA 中,每个进程都有一个优先级,优先级高的进程先被执行,如果有多个进程的优先级相同,则按照先来先服务(First Come First Serve,FCFS)的原则进行调度。 在实现 PSA 算法时,可以使用一个优先队列来存储所有等待执行的进程,每次从队列中取出优先级最高的进程进行执行。当一个进程被创建时,它会被插入到队列中的合适位置,当一个进程完成时,它会被从队列中移除。 以下是一个使用 C++ 实现 PSA 算法的示例代码: c++ #include <iostream> #include <queue> using namespace std; struct Process { int pid; // 进程 ID int priority; // 进程优先级 int burst_time; // 进程执行时间 }; // 定义一个比较函数,用于将进程按照优先级从高到低排序 struct Compare { bool operator()(Process const& p1, Process const& p2) { return p1.priority < p2.priority; } }; int main() { // 创建一个优先队列,用于存储等待执行的进程 priority_queue, Compare> pq; // 添加一些进程到队列中 pq.push({1, 3, 10}); pq.push({2, 1, 5}); pq.push({3, 2, 8}); // 依次执行队列中的进程 while (!pq.empty()) { Process p = pq.top(); pq.pop(); cout << "Executing process " << p.pid << " with priority " << p.priority << endl; } return 0; } 在上面的代码中,我们使用了一个结构体来表示进程,其中包含了进程的 ID、优先级和执行时间。我们还定义了一个比较函数 Compare,用于将进程按照优先级从高到低排序。最后,我们创建了一个优先队列 pq,并将一些进程添加到队列中。在执行过程中,我们每次从队列中取出优先级最高的进程进行执行。
以下是C语言实现FCFS、SJF、RR、PSA调度算法的代码示例: c #include <stdio.h> #include <stdlib.h> #define MAX_PROCESSES 10 typedef struct { int pid; int arrival_time; int burst_time; int waiting_time; int turnaround_time; } Process; void fcfs(Process processes[], int n) { int current_time = 0; for (int i = 0; i < n; i++) { if (processes[i].arrival_time > current_time) { current_time = processes[i].arrival_time; } processes[i].waiting_time = current_time - processes[i].arrival_time; processes[i].turnaround_time = processes[i].waiting_time + processes[i].burst_time; current_time += processes[i].burst_time; } } void sjf(Process processes[], int n) { int current_time = 0; int remaining_processes = n; while (remaining_processes > 0) { int next_process_index = -1; int shortest_burst_time = 999999; for (int i = 0; i < n; i++) { if (processes[i].arrival_time <= current_time && processes[i].burst_time < shortest_burst_time) { next_process_index = i; shortest_burst_time = processes[i].burst_time; } } if (next_process_index == -1) { current_time++; } else { Process next_process = processes[next_process_index]; processes[next_process_index] = processes[remaining_processes-1]; processes[remaining_processes-1] = next_process; remaining_processes--; next_process.waiting_time = current_time - next_process.arrival_time; next_process.turnaround_time = next_process.waiting_time + next_process.burst_time; current_time += next_process.burst_time; } } } void rr(Process processes[], int n, int quantum) { int current_time = 0; int remaining_processes = n; while (remaining_processes > 0) { for (int i = 0; i < n; i++) { if (processes[i].arrival_time <= current_time && processes[i].burst_time > 0) { int time_slice = processes[i].burst_time < quantum ? processes[i].burst_time : quantum; processes[i].burst_time -= time_slice; current_time += time_slice; if (processes[i].burst_time == 0) { remaining_processes--; processes[i].waiting_time = current_time - processes[i].arrival_time - processes[i].turnaround_time; } } } } } void psa(Process processes[], int n) { int current_time = 0; int remaining_processes = n; while (remaining_processes > 0) { int highest_priority_index = -1; int highest_priority = -1; for (int i = 0; i < n; i++) { if (processes[i].arrival_time <= current_time && processes[i].burst_time > 0) { int priority = 1 + processes[i].waiting_time / processes[i].burst_time; if (priority > highest_priority) { highest_priority_index = i; highest_priority = priority; } } } if (highest_priority_index == -1) { current_time++; } else { Process next_process = processes[highest_priority_index]; processes[highest_priority_index] = processes[remaining_processes-1]; processes[remaining_processes-1] = next_process; remaining_processes--; next_process.waiting_time = current_time - next_process.arrival_time; next_process.turnaround_time = next_process.waiting_time + next_process.burst_time; current_time += next_process.burst_time; } } } int main() { Process processes[MAX_PROCESSES]; int n; int quantum; printf("Enter the number of processes: "); scanf("%d", &n); for (int i = 0; i < n; i++) { printf("Enter arrival time and burst time for process %d: ", i+1); scanf("%d %d", &processes[i].arrival_time, &processes[i].burst_time); processes[i].pid = i+1; } printf("\nFCFS:\n"); fcfs(processes, n); for (int i = 0; i < n; i++) { printf("Process %d: arrival_time=%d, burst_time=%d, waiting_time=%d, turnaround_time=%d\n", processes[i].pid, processes[i].arrival_time, processes[i].burst_time, processes[i].waiting_time, processes[i].turnaround_time); } printf("\nSJF:\n"); sjf(processes, n); for (int i = 0; i < n; i++) { printf("Process %d: arrival_time=%d, burst_time=%d, waiting_time=%d, turnaround_time=%d\n", processes[i].pid, processes[i].arrival_time, processes[i].burst_time, processes[i].waiting_time, processes[i].turnaround_time); } printf("\nEnter the time quantum for RR: "); scanf("%d", &quantum); printf("\nRR:\n"); rr(processes, n, quantum); for (int i = 0; i < n; i++) { printf("Process %d: arrival_time=%d, burst_time=%d, waiting_time=%d, turnaround_time=%d\n", processes[i].pid, processes[i].arrival_time, processes[i].burst_time, processes[i].waiting_time, processes[i].turnaround_time); } printf("\nPSA:\n"); psa(processes, n); for (int i = 0; i < n; i++) { printf("Process %d: arrival_time=%d, burst_time=%d, waiting_time=%d, turnaround_time=%d\n", processes[i].pid, processes[i].arrival_time, processes[i].burst_time, processes[i].waiting_time, processes[i].turnaround_time); } return 0; } 在上面的代码中,有一个 Process 结构体来表示一个进程,包含 PID、到达时间、执行时间、等待时间和周转时间等属性。然后有四个函数 fcfs、sjf、rr 和 psa 分别实现先来先服务、最短作业优先、时间片轮转和优先级调度算法。最后在 main 函数中通过用户输入创建进程列表,依次使用四种算法对进程进行调度,并输出每个进程的信息。
以下是常见的作业调度算法的C语言实现: 1. FCFS(先来先服务) c #include <stdio.h> int main() { int n, i; float avg_tat = 0, avg_wt = 0; int burst[20], tat[20], wt[20]; printf("Enter the number of processes: "); scanf("%d", &n); printf("Enter the burst time for each process:\n"); for(i=0; i<n; i++) { printf("P[%d]: ", i+1); scanf("%d", &burst[i]); } tat[0] = burst[0]; wt[0] = 0; for(i=1; i<n; i++) { tat[i] = tat[i-1] + burst[i]; wt[i] = tat[i-1]; } printf("\nProcess\tBurst Time\tTurnaround Time\tWaiting Time\n"); for(i=0; i<n; i++) { printf("P[%d]\t%d\t\t%d\t\t%d\n", i+1, burst[i], tat[i], wt[i]); avg_tat += tat[i]; avg_wt += wt[i]; } avg_tat /= n; avg_wt /= n; printf("\nAverage Turnaround Time: %.2f", avg_tat); printf("\nAverage Waiting Time: %.2f", avg_wt); return 0; } 2. SJF(短作业优先) c #include <stdio.h> #include <stdlib.h> struct process { int id; int burst; int arrival; int tat; int wt; }; void swap(struct process *a, struct process *b) { struct process temp = *a; *a = *b; *b = temp; } void sort(struct process arr[], int n) { int i, j; for(i=0; i<n-1; i++) { for(j=0; j<n-i-1; j++) { if(arr[j].burst > arr[j+1].burst) { swap(&arr[j], &arr[j+1]); } } } } int main() { int n, i, j; float avg_tat = 0, avg_wt = 0; struct process p[20]; printf("Enter the number of processes: "); scanf("%d", &n); printf("Enter the arrival time and burst time for each process:\n"); for(i=0; i<n; i++) { printf("P[%d]: ", i+1); p[i].id = i+1; scanf("%d %d", &p[i].arrival, &p[i].burst); } sort(p, n); p[0].tat = p[0].burst; p[0].wt = 0; for(i=1; i<n; i++) { int sum = 0; for(j=0; j<i; j++) { sum += p[j].burst; } p[i].tat = sum + p[i].burst - p[i].arrival; p[i].wt = p[i-1].wt + p[i-1].burst - p[i].arrival; if(p[i].wt < 0) { p[i].wt = 0; } } printf("\nProcess\tArrival Time\tBurst Time\tTurnaround Time\tWaiting Time\n"); for(i=0; i<n; i++) { printf("P[%d]\t%d\t\t%d\t\t%d\t\t%d\n", p[i].id, p[i].arrival, p[i].burst, p[i].tat, p[i].wt); avg_tat += p[i].tat; avg_wt += p[i].wt; } avg_tat /= n; avg_wt /= n; printf("\nAverage Turnaround Time: %.2f", avg_tat); printf("\nAverage Waiting Time: %.2f", avg_wt); return 0; } 3. PSA(优先级调度算法) c #include <stdio.h> #include <stdlib.h> struct process { int id; int burst; int priority; int tat; int wt; }; void swap(struct process *a, struct process *b) { struct process temp = *a; *a = *b; *b = temp; } void sort(struct process arr[], int n) { int i, j; for(i=0; i<n-1; i++) { for(j=0; j<n-i-1; j++) { if(arr[j].priority > arr[j+1].priority) { swap(&arr[j], &arr[j+1]); } } } } int main() { int n, i, j; float avg_tat = 0, avg_wt = 0; struct process p[20]; printf("Enter the number of processes: "); scanf("%d", &n); printf("Enter the burst time and priority for each process:\n"); for(i=0; i<n; i++) { printf("P[%d]: ", i+1); p[i].id = i+1; scanf("%d %d", &p[i].burst, &p[i].priority); } sort(p, n); p[0].wt = 0; p[0].tat = p[0].burst; for(i=1; i<n; i++) { p[i].wt = p[i-1].wt + p[i-1].burst; p[i].tat = p[i].wt + p[i].burst; } printf("\nProcess\tBurst Time\tPriority\tTurnaround Time\tWaiting Time\n"); for(i=0; i<n; i++) { printf("P[%d]\t%d\t\t%d\t\t%d\t\t%d\n", p[i].id, p[i].burst, p[i].priority, p[i].tat, p[i].wt); avg_tat += p[i].tat; avg_wt += p[i].wt; } avg_tat /= n; avg_wt /= n; printf("\nAverage Turnaround Time: %.2f", avg_tat); printf("\nAverage Waiting Time: %.2f", avg_wt); return 0; } 4. RR(时间片轮转调度算法) c #include <stdio.h> #include <stdlib.h> struct process { int id; int burst; int remaining; int tat; int wt; }; int main() { int n, i, t = 0, count = 0, tq; float avg_tat = 0, avg_wt = 0; struct process p[20]; printf("Enter the number of processes: "); scanf("%d", &n); printf("Enter the time quantum: "); scanf("%d", &tq); printf("Enter the burst time for each process:\n"); for(i=0; i<n; i++) { printf("P[%d]: ", i+1); p[i].id = i+1; scanf("%d", &p[i].burst); p[i].remaining = p[i].burst; } while(count < n) { for(i=0; i<n; i++) { if(p[i].remaining > 0) { if(p[i].remaining > tq) { t += tq; p[i].remaining -= tq; } else { t += p[i].remaining; p[i].wt = t - p[i].burst; p[i].remaining = 0; count++; p[i].tat = t; avg_tat += p[i].tat; avg_wt += p[i].wt; } } } } avg_tat /= n; avg_wt /= n; printf("\nProcess\tBurst Time\tTurnaround Time\tWaiting Time\n"); for(i=0; i<n; i++) { printf("P[%d]\t%d\t\t%d\t\t%d\n", p[i].id, p[i].burst, p[i].tat, p[i].wt); } printf("\nAverage Turnaround Time: %.2f", avg_tat); printf("\nAverage Waiting Time: %.2f", avg_wt); return 0; } 5. MFS(多级反馈队列调度算法) c #include <stdio.h> #include <stdlib.h> struct process { int id; int burst; int remaining; int priority; int tat; int wt; }; void swap(struct process *a, struct process *b) { struct process temp = *a; *a = *b; *b = temp; } void sort(struct process arr[], int n) { int i, j; for(i=0; i<n-1; i++) { for(j=0; j<n-i-1; j++) { if(arr[j].priority < arr[j+1].priority) { swap(&arr[j], &arr[j+1]); } } } } int main() { int n, i, j, t = 0, count = 0; float avg_tat = 0, avg_wt = 0; struct process p[20]; printf("Enter the number of processes: "); scanf("%d", &n); printf("Enter the burst time and priority for each process:\n"); for(i=0; i<n; i++) { printf("P[%d]: ", i+1); p[i].id = i+1; scanf("%d %d", &p[i].burst, &p[i].priority); p[i].remaining = p[i].burst; } sort(p, n); while(count < n) { for(i=0; i<n; i++) { if(p[i].remaining > 0) { if(p[i].remaining > 2) { t += 2; p[i].remaining -= 2; p[i].priority--; } else { t += p[i].remaining; p[i].wt = t - p[i].burst; p[i].remaining = 0; count++; p[i].tat = t; avg_tat += p[i].tat; avg_wt += p[i].wt; } } } sort(p, n); } avg_tat /= n; avg_wt /= n; printf("\nProcess\tBurst Time\tPriority\tTurnaround Time\tWaiting Time\n"); for(i=0; i<n; i++) { printf("P[%d]\t%d\t\t%d\t\t%d\t\t%d\n", p[i].id, p[i].burst, p[i].priority, p[i].tat, p[i].wt); } printf("\nAverage Turnaround Time: %.2f", avg_tat); printf("\nAverage Waiting Time: %.2f", avg_wt); return 0; }
以下是C语言实现FCFS、SJF、PSA、RR的代码。 FCFS(先来先服务): c #include<stdio.h> int main() { int bt[20], wt[20], tat[20], n, i, j; float avwt = 0, avtat = 0; printf("Enter total number of processes(maximum 20): "); scanf("%d", &n); printf("\nEnter Process Burst Time: \n"); for(i = 0; i < n; i++) { printf("P[%d]: ", i+1); scanf("%d", &bt[i]); } wt[0] = 0; for(i = 1; i < n; i++) { wt[i] = 0; for(j = 0; j < i; j++) wt[i] += bt[j]; } printf("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time"); for(i = 0; i < n; i++) { tat[i] = bt[i] + wt[i]; avwt += wt[i]; avtat += tat[i]; printf("\nP[%d]\t\t%d\t\t%d\t\t%d", i+1, bt[i], wt[i], tat[i]); } avwt /= i; avtat /= i; printf("\n\nAverage Waiting Time: %f", avwt); printf("\nAverage Turnaround Time: %f", avtat); return 0; } SJF(短作业优先): c #include<stdio.h> int main() { int bt[20], wt[20], tat[20], p[20], i, j, n, temp; float avwt = 0, avtat = 0; printf("Enter total number of processes(maximum 20): "); scanf("%d", &n); printf("\nEnter Process Burst Time: \n"); for(i = 0; i < n; i++) { printf("P[%d]: ", i+1); scanf("%d", &bt[i]); p[i] = i+1; } for(i = 0; i < n; i++) { for(j = i+1; j < n; j++) { if(bt[i] > bt[j]) { temp = bt[i]; bt[i] = bt[j]; bt[j] = temp; temp = p[i]; p[i] = p[j]; p[j] = temp; } } } wt[0] = 0; for(i = 1; i < n; i++) { wt[i] = 0; for(j = 0; j < i; j++) wt[i] += bt[j]; } printf("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time"); for(i = 0; i < n; i++) { tat[i] = bt[i] + wt[i]; avwt += wt[i]; avtat += tat[i]; printf("\nP[%d]\t\t%d\t\t%d\t\t%d", p[i], bt[i], wt[i], tat[i]); } avwt /= i; avtat /= i; printf("\n\nAverage Waiting Time: %f", avwt); printf("\nAverage Turnaround Time: %f", avtat); return 0; } PSA(优先级调度算法): c #include<stdio.h> int main() { int bt[20], wt[20], tat[20], p[20], pr[20], i, j, n, temp; float avwt = 0, avtat = 0; printf("Enter total number of processes(maximum 20): "); scanf("%d", &n); printf("\nEnter Process Burst Time and Priority: \n"); for(i = 0; i < n; i++) { printf("P[%d]: ", i+1); scanf("%d %d", &bt[i], &pr[i]); p[i] = i+1; } for(i = 0; i < n; i++) { for(j = i+1; j < n; j++) { if(pr[i] > pr[j]) { temp = bt[i]; bt[i] = bt[j]; bt[j] = temp; temp = pr[i]; pr[i] = pr[j]; pr[j] = temp; temp = p[i]; p[i] = p[j]; p[j] = temp; } } } wt[0] = 0; for(i = 1; i < n; i++) { wt[i] = 0; for(j = 0; j < i; j++) wt[i] += bt[j]; } printf("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time"); for(i = 0; i < n; i++) { tat[i] = bt[i] + wt[i]; avwt += wt[i]; avtat += tat[i]; printf("\nP[%d]\t\t%d\t\t%d\t\t%d", p[i], bt[i], wt[i], tat[i]); } avwt /= i; avtat /= i; printf("\n\nAverage Waiting Time: %f", avwt); printf("\nAverage Turnaround Time: %f", avtat); return 0; } RR(时间片轮转调度算法): c #include<stdio.h> int main() { int i, n, qt, wt[20], tat[20], bt[20], rem_bt[20], time = 0; float avwt = 0, avtat = 0; printf("Enter total number of processes(maximum 20): "); scanf("%d", &n); printf("\nEnter Process Burst Time: \n"); for(i = 0; i < n; i++) { printf("P[%d]: ", i+1); scanf("%d", &bt[i]); rem_bt[i] = bt[i]; } printf("\nEnter Time Quantum: "); scanf("%d", &qt); while(1) { int flag = 0; for(i = 0; i < n; i++) { if(rem_bt[i] > 0) { flag = 1; if(rem_bt[i] > qt) { time += qt; rem_bt[i] -= qt; } else { time += rem_bt[i]; wt[i] = time - bt[i]; rem_bt[i] = 0; } } } if(flag == 0) break; } for(i = 0; i < n; i++) { tat[i] = bt[i] + wt[i]; avwt += wt[i]; avtat += tat[i]; } avwt /= i; avtat /= i; printf("\n\nAverage Waiting Time: %f", avwt); printf("\nAverage Turnaround Time: %f", avtat); return 0; }
PSA优先级调度算法的C语言实现: c #include <stdio.h> #define MAX_PROCESS 10 struct Process { int id; int priority; int burst_time; int arrival_time; int waiting_time; int turnaround_time; }; int main() { int n, i, j, total_waiting_time = 0, total_turnaround_time = 0; float avg_waiting_time, avg_turnaround_time; struct Process p[MAX_PROCESS], temp; // 输入进程信息 printf("请输入进程数量(最多%d个):", MAX_PROCESS); scanf("%d", &n); printf("请依次输入每个进程的优先级、CPU执行时间和到达时间:\n"); for (i = 0; i < n; i++) { p[i].id = i + 1; scanf("%d %d %d", &p[i].priority, &p[i].burst_time, &p[i].arrival_time); } // 按照优先级对进程进行排序 for (i = 0; i < n - 1; i++) { for (j = 0; j < n - i - 1; j++) { if (p[j].priority < p[j + 1].priority) { temp = p[j]; p[j] = p[j + 1]; p[j + 1] = temp; } } } // 计算等待时间和周转时间 for (i = 0; i < n; i++) { p[i].waiting_time = i == 0 ? 0 : p[i - 1].waiting_time + p[i - 1].burst_time; p[i].turnaround_time = p[i].waiting_time + p[i].burst_time; total_waiting_time += p[i].waiting_time; total_turnaround_time += p[i].turnaround_time; } // 输出结果 printf("进程ID\t优先级\tCPU执行时间\t到达时间\t等待时间\t周转时间\n"); for (i = 0; i < n; i++) { printf("%d\t%d\t%d\t\t%d\t\t%d\t\t%d\n", p[i].id, p[i].priority, p[i].burst_time, p[i].arrival_time, p[i].waiting_time, p[i].turnaround_time); } avg_waiting_time = (float) total_waiting_time / n; avg_turnaround_time = (float) total_turnaround_time / n; printf("平均等待时间:%.2f\n平均周转时间:%.2f\n", avg_waiting_time, avg_turnaround_time); return 0; } RR时间片轮转调度算法的C语言实现: c #include <stdio.h> #define MAX_PROCESS 10 struct Process { int id; int burst_time; int arrival_time; int remaining_time; int waiting_time; int turnaround_time; }; int main() { int n, i, j, time_quantum, total_waiting_time = 0, total_turnaround_time = 0; float avg_waiting_time, avg_turnaround_time; struct Process p[MAX_PROCESS], temp; // 输入进程信息 printf("请输入进程数量(最多%d个):", MAX_PROCESS); scanf("%d", &n); printf("请依次输入每个进程的CPU执行时间和到达时间:\n"); for (i = 0; i < n; i++) { p[i].id = i + 1; scanf("%d %d", &p[i].burst_time, &p[i].arrival_time); p[i].remaining_time = p[i].burst_time; } printf("请输入时间片大小:"); scanf("%d", &time_quantum); // 时间片轮转调度 for (i = 0; ; i++) { int all_finished = 1; // 所有进程是否都已经完成 for (j = 0; j < n; j++) { if (p[j].remaining_time > 0) { all_finished = 0; if (p[j].remaining_time > time_quantum) { // 执行时间超过时间片大小 p[j].remaining_time -= time_quantum; i += time_quantum - 1; // 时间片耗尽,更新时间 } else { // 执行时间不足时间片大小,执行完毕 p[j].waiting_time = i - p[j].arrival_time - p[j].burst_time + p[j].remaining_time; p[j].remaining_time = 0; } } } if (all_finished) { break; } } // 计算周转时间 for (i = 0; i < n; i++) { p[i].turnaround_time = p[i].burst_time + p[i].waiting_time; total_waiting_time += p[i].waiting_time; total_turnaround_time += p[i].turnaround_time; } // 输出结果 printf("进程ID\tCPU执行时间\t到达时间\t等待时间\t周转时间\n"); for (i = 0; i < n; i++) { printf("%d\t%d\t\t%d\t\t%d\t\t%d\n", p[i].id, p[i].burst_time, p[i].arrival_time, p[i].waiting_time, p[i].turnaround_time); } avg_waiting_time = (float) total_waiting_time / n; avg_turnaround_time = (float) total_turnaround_time / n; printf("平均等待时间:%.2f\n平均周转时间:%.2f\n", avg_waiting_time, avg_turnaround_time); return 0; }

最新推荐

电力及公用事业行业月报月第二产业用电量及水电发电量回暖我国国民经济恢复向好-16页.pdf.zip

电力及公用事业、电子设备与新能源类报告 文件类型:PDF 打开方式:直接解压,无需密码

ChatGPT技术在金融领域中的智能客户服务和投资咨询应用场景分析.docx

ChatGPT技术在金融领域中的智能客户服务和投资咨询应用场景分析

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�

1.创建以自己姓名拼音缩写为名的数据库,创建n+自己班级序号(如n10)为名的数据表。2.表结构为3列:第1列列名为id,设为主键、自增;第2列列名为name;第3列自拟。 3.为数据表创建模型,编写相应的路由、控制器和视图,视图中用无序列表(ul 标签)呈现数据表name列所有数据。 4.创建视图,在表单中提供两个文本框,第一个文本框用于输入以上数据表id列相应数值,以post方式提交表单。 5.控制器方法根据表单提交的id值,将相应行的name列修改为第二个文本框中输入的数据。

步骤如下: 1. 创建数据库和数据表 创建名为xny_n10的数据表,其中xny为姓名拼音缩写,n10为班级序号。 ``` CREATE DATABASE IF NOT EXISTS xny_n10; USE xny_n10; CREATE TABLE IF NOT EXISTS xny_n10 ( id INT(11) PRIMARY KEY AUTO_INCREMENT, name VARCHAR(50), column3 VARCHAR(50) ); ``` 2. 创建模型 在app/Models目录下创建XnyN10.php文件,定义XnyN10模型类,继承自I

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

液压推板式隧道电阻炉计算机监控设计毕业设计.doc

HAL多学科开放获取档案库的作用及代理重加密和认证委托的研究

0HAL编号:tel-038172580https://theses.hal.science/tel-038172580提交日期:2022年10月17日0HAL是一个多学科开放获取档案库,用于存储和传播科学研究文档,无论其是否发表。这些文档可以来自法国或国外的教育和研究机构,也可以来自公共或私人研究中心。0HAL多学科开放获取档案库旨在存储和传播法国或国外的教育和研究机构、公共或私人实验室发表或未发表的研究文档。0代理重加密和认证委托的贡献0Anass Sbai0引用此版本:0Anass Sbai. 代理重加密和认证委托的贡献. 离散数学[cs.DM]. 皮卡第朱尔大学, 2021. 法语. �NNT:2021AMIE0032�. �tel-03817258�0博士学位论文0专业“计算机科学”0提交给科技与健康学院博士学位学校0皮卡第朱尔大学0由0Anass SBAI0获得皮卡第朱尔大学博士学位0代理重加密和认证委托的贡献0于2021年7月5日,在评审人的意见后,面向考试委员会进行