幸运的店家python

时间: 2023-11-20 09:57:12 浏览: 147
根据提供的引用内容,第一个引用是一段Python编程题的代码,与“幸运的店家”问题似乎没有关系。第二个引用是一个问题描述,描述了一个商店只卖一种货物,价格为N元,但只能使用面值为3的幂的纸币进行支付,要求凑出比N大且最小的价值。炫炫想知道他最多可以得到多少张纸币。 根据问题描述,我们可以使用贪心算法来解决这个问题。具体来说,我们可以从大到小枚举面值为3的幂,每次尽可能地使用当前面值的纸币,直到凑出比N大且最小的价值。具体实现可以参考以下代码: ```python def get_max_num_of_paper_money(n): power_of_three = [1] while power_of_three[-1] < n: power_of_three.append(power_of_three[-1] * 3) power_of_three = power_of_three[::-1] # 从大到小枚举 count = 0 for p in power_of_three: while n >= p: n -= p count += 1 return count # 示例 print(get_max_num_of_paper_money(10)) # 输出:2,即使用9元和1元两张纸币 ```
相关问题

用python实现将题目具体化,为具体售卖某类商品的店家,方便构建问答数据集和预设的问答类别等;数据集和问答类别应尽可能丰富;

好的,我们可以基于 Python,使用自然语言处理库和机器学习库来实现这个任务。具体步骤如下: 1. 确定商品类型和售卖店家:我们可以选择一个具体的商品类型,比如服装,然后选择一个售卖该商品的店家,比如 Zara。 2. 收集问答数据集:我们可以在网上搜索有关该商品类型和店家的常见问题,例如:“Zara 的退换货政策是什么?”、“Zara 的新品发布时间是什么?”等等。我们可以将这些问题和对应的答案收集起来,作为我们的问答数据集。 3. 设计问答类别:我们可以将问题分成不同的类别,例如:价格相关问题、售后服务相关问题、新品发布相关问题等等。每个问题都可以被归为其中一个或多个类别。 4. 数据预处理:我们需要对收集到的问答数据进行预处理,比如去除停用词、标点符号、数字等等。然后将每个问题和答案转化为向量表示,以便于机器学习算法的处理。 5. 训练模型:我们可以使用机器学习算法来训练一个问答模型,比如基于神经网络的模型。我们可以使用已有的问答数据集和设计好的问答类别来训练模型,以便模型可以自动识别问题并给出正确的答案。 6. 测试和调整模型:我们可以使用一部分问答数据集来测试模型的准确率,并根据测试结果来调整模型的参数,以便提高模型的准确率。 7. 部署模型:最后,我们可以将训练好的模型部署到一个可用的应用程序中,以便用户可以通过输入问题来获取答案。 以上是一个大概的实现流程,具体的实现细节会根据实际情况进行调整。

python火锅店点菜系统

好的,这个点菜系统可以分为以下几个步骤: 1. 展示菜单:首先需要展示出火锅店的菜单,包括每种菜的名称、价格、图片等信息。 2. 选择菜品:顾客可以根据自己的喜好在菜单中选择自己想要的菜品,可以选择多个菜品。 3. 计算价格:系统需要根据顾客选择的菜品,计算出总价格。 4. 下单付款:顾客可以在系统中下单,并进行支付。 5. 处理订单:店家收到订单后,需要进行处理,包括准备食材、烹饪菜品、上菜等操作。 6. 完成订单:顾客用餐结束后,店家需要将订单标记为已完成。 以上是一个简单的火锅店点菜系统的流程。在具体实现时,可以使用Python编写程序,使用GUI工具包如Tkinter或PyQt5来实现一个可视化界面,实现上述流程。
阅读全文

相关推荐

import numpy as np import csv import pandas as pd import numpy as npjk import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei']#解决图标中汉字显示问题 plt.rcParams['axes.unicode_minus']=False#解决图标中汉字显示问题 from urllib.request import urlopen,Request from bs4 import BeautifulSoup #云计算2113方宇-2021058226 headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'} url = 'https://search.jd.com/Search?keyword=%E8%93%9D%E7%89%99%E9%BC%A0%E6%A0%87&enc=utf-8&wq=%E8%93%9D%E7%89%99%E9%BC%A0%E6%A0%87&pvid=405a663911e84dd3822389ef5b97c147' response = Request(url,headers=headers) res = urlopen(response) data = res.read().decode('utf-8') soup = BeautifulSoup(data,'html.parser') ddd=soup.find('ul',class_="gl-warp clearfix") bbb=ddd.select('li>.gl-i-wrap>.p-price>strong>i')#价格 ccc=ddd.select('li>.gl-i-wrap>.p-shop>span>a')#店名 #云计算2113方宇2021058226 get_rmb_date = [] for i in bbb: get_rmb_date.append(i.text) get_shop_date = [] for i in ccc: get_shop_date.append(i.text) data = [] for i in range(len(get_shop_date)): temp = [] temp.append(get_shop_date[i]) temp.append(get_rmb_date[i]) data.append(temp) print(data) #云计算2113-方宇2021058226 f = open('D:/mypython/mycode/2021058226.csv','w',encoding='utf-8') csv_write = csv.writer(f) csv_write.writerow(['商品店家','商品价格']) for i in data: csv_write.writerow(i) f.close() #云计算2113方宇-2021058226 csv_file ='D:/mypython/mycode/2021058226.csv' csv_data=pd.read_csv(csv_file,low_memory=False) csv_df=pd.DataFrame(csv_data) dfl=csv_df.head(n=10) print(dfl) plt.figure(figsize = (10,6)) x = np.arange(10) y = np.array(dfl['商品店家']) xticks = list(dfl['商品价格']) print(x,y,xticks) p=[0,1,2,3,4,5,6,7,8,9] plt.xticks(p,y,rotation=20) plt.bar(p,xticks,color='red') plt.show()如何将词云柱状图按序排列

最新推荐

recommend-type

python url 参数修改方法

本文将详细讲解如何在Python中修改URL参数,主要以Python 3.5及以上版本为例,因为Python 2.7和Python 3.4之间的`urllib`模块有一些差异。 首先,我们需要导入`urllib.parse`模块,这个模块提供了对URL进行解析、...
recommend-type

Python tkinter模版代码实例

Python的tkinter模块是Python标准库中的一个GUI(图形用户界面)工具包,用于创建桌面应用程序。本实例展示了如何利用tkinter和threading模块来构建一个具有交互功能的应用,包括开始、暂停和继续按钮,以及进度条和...
recommend-type

python如何制作英文字典

在Python编程中,创建一个英文字典应用是一个实用的练习,可以帮助学习者更好地理解字典数据结构以及文件操作。下面我们将详细讨论如何使用Python来制作一个简单的英文字典程序,包括添加单词、查询、退出功能,并将...
recommend-type

Python使用OpenCV进行标定

这篇文章将探讨如何使用Python和OpenCV库进行相机标定,特别是针对棋盘格模板的方法。 首先,我们要理解标定的目的。相机标定是为了消除由相机硬件特性引起的图像失真,使图像中的三维点能够在二维图像平面上准确地...
recommend-type

python距离测量的方法

在Python编程中,进行距离测量是一项基础但至关重要的任务,特别是在数据分析、图像处理、路径规划等领域。本篇文章将详细介绍三种常见的距离测量方法:欧式距离、街区距离和棋盘距离。 1. **欧式距离(Euclidean ...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。