15:49:54 insert into user(id,nmae,pwd) values (1,"何耳林","123456"), (2,"张三","123457"), (3,"李四","123458") Error Code: 1054. Unknown column 'nmae' in 'field list' 0.000 sec
时间: 2023-07-21 12:11:37 浏览: 167
根据你提供的插入语句,出现了错误代码 1054,表示在字段列表中找不到列名 'nmae'。这是因为你在插入语句中拼写错误,将 'name' 拼写为 'nmae'。
请将插入语句修改为以下形式:
```sql
INSERT INTO user (id, name, pwd) VALUES (1, "何耳林", "123456"), (2, "张三", "123457"), (3, "李四", "123458");
```
修正后的语句中,将 'nmae' 修改为了正确的 'name'。执行此语句即可成功插入数据到 `user` 表中。
相关问题
能帮我修改一段R代码吗?它是用于对鲍鱼数据进行分析后预测性别的R代码,我希望你把它改成除了随机森林模型外的别的模型的代码,我的R代码如下:# load the data abalone <- read.csv("abalone.data", header = FALSE) # set column names colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings") # convert "Sex" variable to a factor abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F")) # split the data into training and testing sets set.seed(123) # for reproducibility trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone)) train <- abalone[trainIndex,] test <- abalone[-trainIndex,] # build a random forest model using default parameters library(randomForest) rf_model <- randomForest(Rings ~ ., data = train) # make predictions on the testing set rf_pred <- predict(rf_model, newdata = test) # evaluate the performance of the model library(Metrics) rmse <- rmse(rf_pred, test$Rings) mae <- mae(rf_pred, test$Rings) cat("RMSE:", rmse, "\nMAE:", mae) accuracy <- (1 - mae / mean(test$Rings)) * 100 cat("\n预测准确率:", round(accuracy, 2), "%")
当然可以帮您修改R代码。您可以选择使用其他机器学习模型来替代随机森林模型,如逻辑回归、决策树、支持向量机等等。下面是适用于逻辑回归模型的修改后的代码:
# load the data
abalone <- read.csv("abalone.data", header = FALSE)
# set column names
colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings")
# convert "Sex" variable to a factor
abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F"))
# split the data into training and testing sets
set.seed(123) # for reproducibility
trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone))
train <- abalone[trainIndex,]
test <- abalone[-trainIndex,]
# build a logistic regression model
model <- glm(Sex ~ Length + Diameter + Height + Whole_weight + Shucked_weight + Viscera_weight + Shell_weight + Rings, data = train, family = binomial(link = 'logit'))
# make predictions on the testing set
pred <- predict(model, newdata = test, type = 'response')
pred <- ifelse(pred > 0.5, 'M', 'F')
# evaluate the performance of the model
library(Metrics)
accuracy <- accuracy(pred, test$Sex)
cat("\n预测准确率:", round(accuracy, 2), "%")
请注意,逻辑回归模型的预测结果是二元分类,所以我们的目标变量从“Rings”变成了“Sex”。另外,我们需要使用“binomial”家族的函数来告诉R我们正在运用逻辑回归模型进行二元分类。
A.get_nmae() missing 1 required positional argument: 'self'
This error occurs when you try to call the method `get_name()` on an object without passing the `self` argument explicitly.
In Python, the first argument of an instance method is always `self`, which represents the instance itself. When calling the method, Python automatically passes the instance as the first argument, so you don't need to pass it explicitly.
To fix the error, make sure you're calling the method on an instance of the class, and don't pass the `self` argument explicitly. For example:
```
class MyClass:
def __init__(self, name):
self.name = name
def get_name(self):
return self.name
obj = MyClass("John")
print(obj.get_name()) # Output: John
```
In this example, we create an instance of `MyClass` called `obj`, and then call the `get_name()` method on it without passing the `self` argument explicitly. The method returns the value of the `name` attribute of the instance.
阅读全文