yolov11 vit
时间: 2025-01-07 21:02:25 浏览: 5
### YOLOv11与ViT的融合实现
#### 通道放缩系数设置
对于不同版本的YOLOv11模型,在配置文件中通过参数列表`[-1, 1, LSKNet, [0.25]]`中的最后一个元素指定通道放缩系数。具体来说,YOLOv11N采用的是0.25作为其通道放缩因子;而当涉及到更大规模的数据集或是更复杂的场景识别任务时,则分别有YOLOv11S(0.5),YOLOv11M(1), YOLOv11L(1)以及增强型的YOLOv11X(1.5)[^1]。
#### 结合视觉Transformer(ViT)
为了使YOLO系列算法能够更好地处理复杂背景下的物体检测问题,引入了基于自注意力机制的Vision Transformer (ViT)结构。这种组合不仅提升了原有YOLO架构的空间特征提取能力,还增强了对长距离依赖关系的学习效率。然而值得注意的是,在实际编码过程中需要特别注意两者之间的接口设计,确保来自卷积层的信息可以平滑过渡到transformer模块内进行进一步加工[^2]。
```python
import torch.nn as nn
class YoloVit(nn.Module):
def __init__(self, backbone='yolov11n', transformer_layers=4):
super(YoloVit, self).__init__()
# Backbone selection based on the provided parameter.
if backbone.lower() == 'yolov11n':
scale_factor = 0.25
elif backbone.lower() == 'yolov11s':
scale_factor = 0.5
else:
scale_factor = 1
# Define CNN layers with scaled channels according to chosen version of yolov11.
self.backbone = ... # Placeholder for actual implementation details.
# Initialize Vision Transformer Layers after extracting features using CNN.
self.transformer = nn.TransformerEncoder(
encoder_layer=nn.TransformerEncoderLayer(d_model=int(256*scale_factor),
nhead=8,
dim_feedforward=2048),
num_layers=transformer_layers
)
def forward(self, x):
cnn_features = self.backbone(x)
transformed_output = self.transformer(cnn_features)
return transformed_output
```
阅读全文