send_buf=(const void *)send_bufy; 请问结合上文 这个赋值合法么 为什么 详细说明

时间: 2024-04-16 18:25:02 浏览: 16
根据你提供的代码 `send_buf = (const void *)send_bufy;`,我们可以看出你想将变量 `send_bufy` 的值赋给变量 `send_buf`。这样的赋值操作是合法的,但需要注意以下几点: 1. 类型转换:在这个赋值操作中,你使用了类型转换 `(const void *)` 将 `send_bufy` 转换为 `const void *` 类型。类型转换允许你将一个数据类型转换为另一个数据类型,但需要确保转换是合理和安全的。 2. 可能存在数据丢失:由于你将一个变量赋值给另一个变量,所以需要确保两个变量的数据类型兼容,并且没有数据丢失的风险。在这种情况下,如果 `send_bufy` 是一个指针类型,并且你想将其赋值给 `send_buf`,那么需要确保两者的指针类型是兼容的。 综上所述,根据你提供的信息,赋值操作 `send_buf = (const void *)send_bufy;` 在语法上是合法的。但实际操作中,还需要确保类型转换的合理性和数据的兼容性,以避免出现意外的错误或数据丢失。
相关问题

unsigned char send_bufy[192]= {0}; int spi_transfer(struct spi_slave *slave, const void *send_buf, void *recv_buf, size_t length) if (next_spi_data == 1) { send_buf=(const void *)send_bufy; } } 这段操作合法么 请详细解释说明为什么

根据你提供的代码片段,我们可以看到 `send_bufy` 是一个 `unsigned char` 类型的数组,长度为 192,并且初始化为全零。同时,函数 `spi_transfer` 接受 `send_buf` 参数作为一个指向常量 `void` 的指针。 在 `if` 语句中,你尝试将 `send_bufy` 赋值给 `send_buf`,即 `send_buf = (const void *)send_bufy;`。在语法上,这个赋值操作是合法的。因为 `send_bufy` 是一个数组,它会自动转换为指向数组首元素的指针。同时,由于 `send_buf` 是一个指向常量 `void` 的指针,你使用了类型转换将 `send_bufy` 转换为 `const void *` 类型。 所以,从语法上来说,这个赋值操作是合法的。它将 `send_buf` 指向了 `send_bufy` 数组的首地址。这样,在后续的代码中,如果你使用了 `send_buf` 来访问数据,实际上你将会访问到 `send_bufy` 数组中的数据。 需要注意的是,在函数内部修改函数参数 `send_buf` 的值,并不会影响函数外部的实参。这是因为在 C 语言中,函数参数是按值传递的,函数内部对参数的修改只会影响到函数内部的局部变量。 综上所述,根据你提供的信息,赋值操作 `send_buf = (const void *)send_bufy;` 在语法上是合法的,并且可以实现将 `send_bufy` 数组的首地址赋值给 `send_buf`。但需要记住,函数内部对参数的修改并不会影响到函数外部的实参。

b[10]=0 ,int spi_transfer(struct spi_slave *slave, const void *send_buf, void *recv_buf, size_t length){ send_buf = b} 可以直接赋值么

根据您提供的代码片段,`b[10]=0` 是一个合法的操作,表示将数组 `b` 中索引为 10 的元素赋值为 0。 然而,在函数参数 `int spi_transfer(struct spi_slave *slave, const void *send_buf, void *recv_buf, size_t length)` 中,`send_buf` 是一个指向常量的指针,不能直接赋值。 如果您想要将数组 `b` 的地址赋给 `send_buf` 参数,您需要使用类型转换来消除常量性。以下是一个示例代码: ```c #include <stdio.h> struct spi_slave { // 结构体定义 }; int spi_transfer(struct spi_slave *slave, const void *send_buf, void *recv_buf, size_t length) { // 函数实现 return 0; } int main() { int b[10] = {0}; struct spi_slave slave; spi_transfer(&slave, (void *)b, NULL, sizeof(b)); return 0; } ``` 在上述代码中,我们使用类型转换 `(void *)b` 将数组 `b` 的地址转换为 `void *` 类型,并将其传递给 `spi_transfer` 函数的 `send_buf` 参数。通过类型转换,我们消除了 `send_buf` 参数的常量性,使其可以接受数组地址。 希望这能帮助到您!如果您有任何疑问,请随时提问。

相关推荐

请帮我解释这段代码:#include "cmd_parse.h" static int bufed_uart_rcv_1B(void *ref, uint8_t *c) { BUFED_UART_T *h = ref; return bufed_uart_rcv(h, c, 1); } CMD_PARSE_T *cmd_ps_1; osThreadId rx_cmp_tst_hd; extern RNG_HandleTypeDef hrng; void uart1_fast_loopback_test(uint32_t fatfs_ok) { uint8_t *tx_buf, *rx_buf; tx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(tx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_00; } rx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(rx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_01; } FIL *fp = pvPortMalloc(sizeof(*fp)); if(fp==NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_02; } bfdurt_tst_01.rx_buf = rx_buf; bfdurt_tst_01.tx_buf = tx_buf; bfdurt_tst_01.buf_size = URT_TST_BUF_LEN; bfdurt_tst_01.err_cnt = 0; for(uint32_t i = 0; i < URT_TST_BUF_LEN; i++) tx_buf[i] = HAL_RNG_GetRandomNumber(&hrng); osThreadDef(rx_cmp_tst_tsk, uart_rx_cmp, osPriorityBelowNormal, 0, 200); rx_cmp_tst_hd = osThreadCreate(osThread(rx_cmp_tst_tsk), &(bfdurt_tst_ptr)); osDelay(120); uint32_t lp; cmdprs_init(&cmd_ps_1, 256, &RBFD_UART_GET_UART(urt2), bufed_uart_rcv_1B); uint32_t f_num = 0; size_t n; while(1){ GS_Printf("Input test data length\r\n"); cmdprs_read_1line(cmd_ps_1); char ch; int scn = sscanf((void*)cmd_ps_1->buf->data,"%lu%c", &lp, &ch); if(scn == 2){ if(ch == 'M' || ch == 'm') lp <<= 10U; else if(ch == 'G' || ch == 'g') lp <<= 20U; else if(ch == 'K' || ch == 'k') ; else lp >>= 10U; lp /= (URT_TST_BUF_LEN/1024); }else{ GS_Printf("ERROR\r\n"); break; }

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。