pytorch残差网络构建
时间: 2023-10-19 07:33:07 浏览: 107
RDN-pytorch:PyTorch实施残差密集网络以实现图像超分辨率(CVPR 2018)
要构建一个PyTorch残差网络,你可以按照以下步骤进行操作:
1. 首先,导入所需的PyTorch库:
```python
import torch
import torch.nn as nn
```
2. 定义一个基本的残差块(Residual Block):
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
# 如果输入和输出通道数不相同,则使用 1x1 卷积进行维度匹配
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
else:
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(residual)
out = self.relu(out)
return out
```
3. 构建整个残差网络(ResNet):
```python
class ResNet(nn.Module):
def __init__(self, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3, stride=1)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, out_channels, num_blocks, stride):
layers = []
layers.append(ResidualBlock(self.in_channels, out_channels, stride))
self.in_channels = out_channels
for _ in range(1, num_blocks):
layers.append(ResidualBlock(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
4. 使用定义好的残差网络进行训练和测试:
```python
model = ResNet(num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 在训练集上进行训练...
# 在测试集上进行测试...
```
这是一个简化的ResNet实现示例,你可以根据自己的需求进行修改和扩展。希望对你有帮助!
阅读全文