稀疏自编码器pytorch代码
时间: 2023-10-23 08:09:35 浏览: 171
很抱歉,根据提供的引用内容,没有直接给出稀疏自编码器的PyTorch代码。但是,以下是一个简单的稀疏自编码器的PyTorch代码示例,供您参考:
```
import torch
import torch.nn as nn
import torch.optim as optim
class SparseAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size, sparsity_target, sparsity_weight):
super(SparseAutoencoder, self).__init__()
self.encoder = nn.Linear(input_size, hidden_size)
self.decoder = nn.Linear(hidden_size, input_size)
self.sparsity_target = sparsity_target
self.sparsity_weight = sparsity_weight
self.sigmoid = nn.Sigmoid()
def forward(self, x):
hidden = self.sigmoid(self.encoder(x))
output = self.sigmoid(self.decoder(hidden))
return output, hidden
def training_step(self, x, optimizer):
optimizer.zero_grad()
output, hidden = self.forward(x)
reconstruction_loss = nn.MSELoss()(output, x)
sparsity_loss = torch.mean(torch.abs(hidden.mean(dim=0) - self.sparsity_target))
loss = reconstruction_loss + self.sparsity_weight * sparsity_loss
loss.backward()
optimizer.step()
return loss.item()
# Example usage
input_size = 784
hidden_size = 64
sparsity_target = 0.1
sparsity_weight = 0.2
model = SparseAutoencoder(input_size, hidden_size, sparsity_target, sparsity_weight)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
for epoch in range(num_epochs):
for batch_idx, (data, _) in enumerate(train_loader):
data = data.view(data.size(0), -1)
loss = model.training_step(data, optimizer)
# ...
```
在这个示例中,我们定义了一个名为SparseAutoencoder的PyTorch模型类,它包含一个编码器和一个解码器,以及一个用于计算稀疏损失的目标和权重。在训练过程中,我们使用Adam优化器来最小化重建损失和稀疏损失的加权和。请注意,这只是一个简单的示例,您可能需要根据您的具体需求进行修改和调整。
阅读全文