稀疏卷积去噪自编码器pytorch
时间: 2023-06-01 10:02:57 浏览: 211
以下是使用PyTorch实现稀疏卷积去噪自编码器的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SparseConvAutoencoder(nn.Module):
def __init__(self):
super(SparseConvAutoencoder, self).__init__()
# Encoder
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
# Decoder
self.deconv1 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
self.deconv2 = nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1)
self.deconv3 = nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1)
# Sparse Convolution
self.sparseconv1 = nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False, groups=16)
self.sparseconv2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False, groups=32)
self.sparseconv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False, groups=64)
def forward(self, x):
# Encoder
x = F.relu(self.conv1(x))
x = F.relu(self.sparseconv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.sparseconv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.sparseconv3(x))
# Decoder
x = F.relu(self.deconv1(x))
x = F.relu(self.deconv2(x))
x = torch.sigmoid(self.deconv3(x))
return x
```
在这个模型中,我们使用了三个卷积层作为编码器,以及三个反卷积层作为解码器。为了实现稀疏卷积,我们还添加了三个稀疏卷积层,它们的groups参数设置为输出通道数,这样每个输出通道只与输入的一个子集通道进行卷积,从而实现了稀疏卷积。
在前向传播中,我们先对输入进行编码,然后对编码结果进行解码,并使用sigmoid激活函数将输出限制在[0,1]范围内。
阅读全文