稀疏自动编码器pytorch代码
时间: 2023-11-15 11:07:19 浏览: 158
是使用PyTorch实现稀疏自编码器的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class SparseAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size, sparsity_target):
super(SparseAutoencoder, self).__init__()
self.encoder = nn.Linear(input_size, hidden_size)
self.decoder = nn.Linear(hidden_size, input_size)
self.sparsity_target = sparsity_target
self.sparse_loss = nn.KLDivLoss(reduction='sum')
def forward(self, x):
hidden = torch.sigmoid(self.encoder(x))
output = torch.sigmoid(self.decoder(hidden))
return output, hidden
def training_step(self, x, optimizer):
optimizer.zero_grad()
output, hidden = self.forward(x)
reconstruction_loss = nn.MSELoss()(output, x)
sparsity_loss = self.sparse_loss(torch.tensor([self.sparsity_target]), torch.mean(hidden, dim=0))
loss = reconstruction_loss + sparsity_loss
loss.backward()
optimizer.step()
return loss.item()
# 定义模型参数
input_size = 784
hidden_size = 128
sparsity_target = 0.1
learning_rate = 0.01
num_epochs = 10
# 加载数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
# 初始化模型和优化器
model = SparseAutoencoder(input_size, hidden_size, sparsity_target)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
total_loss = 0
for batch in train_loader:
images, _ = batch
images = images.view(images.size(0), -1)
loss = model.training_step(images, optimizer)
total_loss += loss
print("Epoch:", epoch+1, "Loss:", total_loss/len(train_loader))
# 测试模型
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
with torch.no_grad():
for batch in test_loader:
images, _ = batch
images = images.view(images.size(0), -1)
outputs, _ = model(images)
reconstruction_loss = nn.MSELoss()(outputs, images)
print("Reconstruction Loss:", reconstruction_loss.item())
```
阅读全文