GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure;

时间: 2024-11-06 11:20:01 浏览: 34
GPIO_InitTypeDef 和相关的其他结构体(TIM_TimeBaseInitTypeDef 和 TIM_OCInitTypeDef)是在嵌入式系统开发中常用的头文件定义,比如STM32系列微控制器。 1. GPIO_InitTypeDef 是GPIO配置结构体,用于初始化GPIO(通用输入输出)端口,包括设置GPIO的方向(输入或输出)、模式(推挽、开漏等)以及中断功能等。 2. TIM_TimeBaseInitTypeDef 是定时器(Timer)时间基础结构体,通常与定时器的基本配置有关,如计数器的预分频器值、工作模式、时钟源选择等,用于设置定时器的时间基准。 3. TIM_OCInitTypeDef 是定时器输出比较寄存器(Output Compare)初始化结构体,它用于配置定时器的输出通道,比如输出波形、触发事件、占空比等,常用于生成脉冲信号或其他定时任务。 当你需要操作GPIO或者配置定时器功能时,会先通过这些结构体定义相应的参数,然后传递给对应的函数进行硬件初始化。例如: ```c GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 设置要初始化的GPIO引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 设置为推挽输出 TIM_TimeBaseStructure.TIM_Period = 1000; // 定义定时器周期为1000个时钟周期 TIM_TimeBaseStructure.TIM_Prescaler = 84; // 预分频器设置 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // 输出模式为PWM1 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 开始输出 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 输出高电平 // 初始化GPIO GPIO_Init(GPIOA, &GPIO_InitStructure); // 初始化定时器 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_OC1Init(TIM2, &TIM_OCInitStructure); ```
阅读全文

相关推荐

帮我转换成HAL库 void TIM2_PWM_Output(float Duty , uint32_t Frequency) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; NVIC_InitTypeDef NVIC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* GPIOA clock enable */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO ,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 ; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Time base configuration */ TIM_TimeBaseStructure.TIM_Period = (1000000/Frequency)-1; //ARR = (TIM3 counter clock /Frequency)-1 TIM_TimeBaseStructure.TIM_Prescaler = 71; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); /* PWM1 Mode configuration: Channel3 */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = ((1000000/Frequency)-1)*Duty; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC3Init(TIM2, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM2, ENABLE); /* TIM3 enable counter */ TIM_Cmd(TIM2, ENABLE); }

GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOH, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOH, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOH, GPIO_PinSource12, GPIO_AF_TIM5); } { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; uint32_t uiTIMxCLK; uint16_t usPrescaler; uint16_t usPeriod; uiTIMxCLK = SystemCoreClock / 2; if (_ulFreq < 3000) { usPrescaler = 100 - 1; /* 分频比 = 10 / usPeriod = (uiTIMxCLK / 100) / _ulFreq - 1; / 自动重装的值 / } else / 大于4K的频率,无需分频 / { usPrescaler = 0; / 分频比 = 1 / usPeriod = uiTIMxCLK / _ulFreq - 1; / 自动重装的值 / } TIM_TimeBaseStructure.TIM_Period = usPeriod; TIM_TimeBaseStructure.TIM_Prescaler = usPrescaler; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM5, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 4; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; TIM_OC3Init(TIM5, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM5, ENABLE); TIM_Cmd(TIM5, ENABLE); }配置有问题吗

void TIM4_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_Initstructure; TIM_TimeBaseInitTypeDef TIM_TimeBasestructure; TIM_ocInitTypeDef TIM_OCInitStructure; //TIM4/GPIOA/AFIO CLK enable RCC_APB1PeriphclockCmd (RCC_APBlPeriph_TIM4,ENABLE); Rcc_APB2PeriphclockCmd(Rcc_APB2Periph_GPIOB , ENABLE); Rcc_APB2PeriphClockCmd (RCC_APB2Periph_AFIO ,ENABLE); //set PB6(TIM4_CHl) PB7(TIM4_CH2) as AF output mode for PRM output GPIO_Initstructure.GPIO_Pin = GPIO_Pin_6 l GPIO_Pin_7; GPIO_Initstructure.GPIO_Mode = GPIo_Mode_AF_PP; GPIO_Initstructure.GPIo_Speed = GPIo_Speed_5OMHz; GPIO_Init(GPIOB,&GPIO_Initstructure); //TIM4 base config TIM_TimeBasestructure.TIM_Period = arr; TIM_TimeBasestructure.TIM_Prescaler = psc; TIM_TimeBasestructure.TIM_C1ockDivision = 0; TIM_TimeBasestructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit (TIM4,&TIM_TimeBasestructure) ; //PWM of TIM4_CHl config TIM_OCInitstructure.TIM_OCMode = TIM_OcMode_PWM1; TIM_OCInitstructure.TIM_Outputstate = TIM_Outputstate_Enable; TIM_OcInitstructure.TIM_Pulse = 0; TIM_OCInitstructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init (TIM4,&TIM_OCInitStructure) ; TIM_OClpreloadConfig(TIM4,TIM_OCPreload_Enable); // PWM of TIM4_CH2 config TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWMl; TIM_OCInitstructure.TIM_Outputstate = TIM_Outputstate_Enable; TIM_OCInitStructure.TIM_Pulse =0; TIM_OCInitstructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init (TIM4,&TIM_OCInitStructure) ; TIM_OC2PreloadConfig(TIM4,TIM_OCPreload_Enable) ; //TIM4 preload enable TIM_ARRPreloadconfig (TIM4,ENABLE); //MOE enable for advanced TIMl or TIM8 TIM_Ctr1PWMOutputs (TIM4,ENABLE); //TIM4 enable TIM_Cmd (TIM4,ENABLE);

这段代码的含义(#include "stm32f10x.h" // Device header #include "stm32f10x_gpio.h" #define PWM_PERIOD 1000 // PWM波形周期,单位us void TIM_Configuration(void); void GPIO_Configuration(void); int main(void) { GPIO_Configuration(); TIM_Configuration(); while (1) { // 不断更新PWM占空比以控制电机转速 TIM_SetCompare2(TIM1, 500); // 设置占空比为50% delay_ms(1000); TIM_SetCompare2(TIM1, 750); // 设置占空比为75% delay_ms(1000); TIM_SetCompare2(TIM1, 250); // 设置占空比为25% delay_ms(1000); } } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE); // PA8 -> TIM1_CH1 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // PB13 -> TIM1_CH2 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB14 -> TIM1_CH3 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB15 -> DRV8313_EN GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB12 -> DRV8313_FAULT GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); TIM_TimeBaseStructure.TIM_Period = PWM_PERIOD - 1; TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 72MHz时钟,分频为72,计数频率为1MHz TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); // PWM模式1,TIM1_CH2作为PWM输出 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init(TIM1, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable); // 启用死区时间,设置死区时间为1us TIM_BDTRInitStructure.TIM_DeadTime = 10; TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); // 启动TIM1 TIM_Cmd(TIM1, ENABLE); // 使能DRV8313芯片 GPIO_SetBits(GPIOB, GPIO_Pin_15); })

修改 #include "stm32f10x.h" void TIM4_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; /* 使能定时器4时钟 / RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); / 定时器基本配置 / TIM_TimeBaseStructure.TIM_Period = 20000; // 每个PWM周期为20ms TIM_TimeBaseStructure.TIM_Prescaler = 7200 - 1; // 定时器预分频 TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); / PWM模式配置 / TIM_OCStructInit(&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; / PWM输出通道1配置 / TIM_OC1Init(TIM4, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable); / PWM输出通道3配置 / TIM_OC3Init(TIM4, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM4, TIM_OCPreload_Enable); / 使能定时器4 / TIM_Cmd(TIM4, ENABLE); } void Servo_Control(uint16_t angle1, uint16_t angle2) { uint16_t ccr1 = 1000 + (angle1 * 1000 / 180); // 将角度转换为对应的PWM占空比 uint16_t ccr3 = 1000 + (angle2 * 1000 / 270); / 设置PWM输出占空比 / TIM_SetCompare1(TIM4, ccr1); TIM_SetCompare3(TIM4, ccr3); } int main(void) { / 初始化定时器4和GPIOB的相应引脚 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); TIM4_Configuration(); while(1) { Servo_Control(0, 0); // 控制舵机1和舵机2的角度 delay_ms(1000); // 延迟1秒 Servo_Control(90, 135); delay_ms(1000); Servo_Control(180, 270); delay_ms(1000); Servo_Control(90, 135); delay_ms(1000); } }

void TIM4_PWM_Init(u32 arr,u32 psc) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM12,ENABLE); //TIM14时钟使能 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); //使能PORTF时钟 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM12); //GPIOF9复用为定时器12 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(GPIOB,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(TIM12,&TIM_TimeBaseStructure);//初始化定时器14 //初始化TIM14 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式 PWM输出高电平1模式靠左还是2模式靠右 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性 High输出高电平 Low 反转 比较结果是输出高电平还是低电平 TIM_OC1Init(TIM12, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM12 OC1 TIM_OC1PreloadConfig(TIM12, TIM_OCPreload_Enable); //使能TIM12在CCR1上的预装载寄存器 TIM_ARRPreloadConfig(TIM12,ENABLE);//ARPE使能 TIM_Cmd(TIM12, ENABLE); //使能TIM14 什么意思 }

void PWM_Int(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; //¶¨Òå½á¹¹ÌåGPIO_InitStructure TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //¶¨Òå½á¹¹ÌåTIM_TimeBaseStructure TIM_OCInitTypeDef TIM_OCInitStructure; //¶¨Òå½á¹¹ÌåTIM_OCInitStructure RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//ʹÄÜPB¶Ë¿ÚʱÖÓ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//ʹÄܶ¨Ê±Æ÷3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //¸´ÓÃģʽÊä³ö GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; //PB0 ¡¢PB1 GPIO_InitStructure.GPIO_Speed= GPIO_Speed_50MHz; //IO¿ÚËÙ¶È GPIO_Init(GPIOB,&GPIO_InitStructure); //GPIO³õʼ»¯ TIM_TimeBaseStructure.TIM_Period = arr; //ÉèÖÃÏÂÒ»¸ö¸üлµÄ×Ô¶¯ÖØ×°ÔؼĴæÆ÷µÄÖµ TIM_TimeBaseStructure.TIM_Prescaler = psc; //Ô¤·ÖÅäÖµ TIM_TimeBaseStructure.TIM_ClockDivision = 0; //ʱÖÓ·Ö¸î TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //ÏòÉϼÆÊý TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode= TIM_OCMode_PWM1; //PWMÂö³å¿í¶Èµ÷ÖÆ1 TIM_OCInitStructure.TIM_Pulse = 0; //ÉèÖôý×°È벶»ñ±È½Ï¼Ä´æÆ÷µÄÂö³åÖµ TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //ÉèÖÃTIMÊä³ö¼«ÐÔΪ¸ß TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//±È½ÏÊä³öʹÄÜ TIM_OC3Init(TIM3,&TIM_OCInitStructure); TIM_OC4Init(TIM3,&TIM_OCInitStructure); TIM_CtrlPWMOutputs(TIM3,ENABLE);//Ö÷Êä³öʹÄÜ TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable); TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);//ʹÄÜԤװÔؼĴæÆ÷ TIM_ARRPreloadConfig(TIM3,ENABLE); //ʹÄÜ×Ô¶¯×°ÔØÔÊÐíλ TIM_Cmd(TIM3,ENABLE);//Æô¶¯¶¨Ê±Æ÷3 } void Set_PWMA(int PWM) { TIM_SetCompare3(TIM3,PWM);//ÉèÖÃTIM3ͨµÀ3µÄÕ¼¿Õ±È 3000/7200 } void Set_PWMB(int PWM) { TIM_SetCompare4(TIM3,PWM); 这段代码是一个pwm驱动还是两个pwm驱动欸

最新推荐

recommend-type

ysoserial-master.zip

ysoserial是一个用于生成利用不安全的Java对象反序列化的有效负载的概念验证工具。它包含一系列在常见Java库中发现的"gadget chains",可以在特定条件下利用执行不安全的反序列化操作的Java应用程序。ysoserial项目最初在2015年AppSecCali会议上提出,包含针对Apache Commons Collections(3.x和4.x版本)、Spring Beans/Core(4.x版本)和Groovy(2.3.x版本)的利用链
recommend-type

zigbee CC2530无线自组网协议栈系统代码实现协调器与终端的TI Sensor实验和Monitor使用.zip

1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C