深度强化学习matlab
时间: 2023-11-30 12:43:20 浏览: 109
根据提供的引用内容,MATLAB深度学习工具箱提供了各种深度学习网络和算法,但是并没有提供深度强化学习算法。不过,MATLAB提供了强化学习工具箱,可以用于实现强化学习算法,包括深度强化学习。强化学习工具箱提供了各种强化学习算法,包括Q学习、深度Q学习、策略梯度等。此外,MATLAB还提供了各种示例和函数,可以帮助用户快速入门和实现强化学习算法。
以下是一个使用MATLAB实现深度强化学习的简单示例:
```matlab
% 导入强化学习工具箱
addpath('toolbox_rl');
% 创建环境
env = rlPredefinedEnv('CartPole-Discrete');
% 创建深度神经网络
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numAct = actInfo.Dimension(1);
layers = [
imageInputLayer([numObs 1 1],'Normalization','none','Name','state')
fullyConnectedLayer(24,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(24,'Name','CriticStateFC2')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(numAct,Name','output')];
criticOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlQValueRepresentation(layers,obsInfo,actInfo,'Observation',{'state'},criticOpts);
% 创建深度Q学习代理
agentOpts = rlDQNAgentOptions(...
'SampleTime',env.Ts,...
'TargetUpdateFrequency',1e-2,...
'ExperienceBufferLength',1e6,...
'DiscountFactor',0.99,...
'MiniBatchSize',64);
agent = rlDQNAgent(critic,agentOpts);
% 训练代理
trainOpts = rlTrainingOptions(...
'MaxEpisodes',500,...
'MaxStepsPerEpisode',500,...
'Verbose',false,...
'Plots','training-progress');
trainingStats = train(agent,env,trainOpts);
% 测试代理
simOpts = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOpts);
```
阅读全文