深度强化学习matlab代码
时间: 2023-09-04 12:07:53 浏览: 159
以下是一个简单的深度强化学习的 Matlab 代码示例,使用深度 Q 学习算法来解决 OpenAI Gym 环境中的 Cartpole 任务:
```matlab
%% 导入 OpenAI Gym 环境
env = gym.make('CartPole-v0');
%% 建立深度 Q 学习模型
inputSize = env.observation_space.shape(2);
numActions = env.action_space.n;
hiddenSize = 10;
layers = [
imageInputLayer([1 1 inputSize],'Normalization','none','Name','state')
fullyConnectedLayer(hiddenSize,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(numActions,'Name','fc2')
];
lgraph = layerGraph(layers);
%% 设置深度 Q 学习算法超参数
maxEpisodes = 500;
maxSteps = 200;
epsilon = 0.1;
epsilonDecay = 0.99;
gamma = 0.99;
alpha = 0.1;
%% 训练深度 Q 学习模型
state = reset(env);
totalReward = 0;
for episode = 1:maxEpisodes
episodeReward = 0;
epsilon = epsilon * epsilonDecay;
for step = 1:maxSteps
% 以 epsilon-greedy 策略选择动作
if rand < epsilon
action = randi(numActions);
else
stateInput = imresize(state,[1 1 inputSize]);
action = predict(dqn,stateInput);
[~,action] = max(action);
end
% 执行动作并观察新状态和奖励
[nextState,reward,done,~] = step(env,action);
episodeReward = episodeReward + reward;
% 更新 Q 值
nextQ = predict(dqn,imresize(nextState,[1 1 inputSize]));
targetQ = reward + gamma * max(nextQ);
stateInput = imresize(state,[1 1 inputSize]);
dqn = trainNetwork(stateInput,targetQ,dqn.LearnRateSchedule.LearnRates);
% 更新状态
state = nextState;
% 如果游戏结束,跳出循环
if done
break
end
end
% 记录总奖励
totalReward = totalReward + episodeReward;
end
%% 测试深度 Q 学习模型
state = reset(env);
totalReward = 0;
for step = 1:maxSteps
% 以 greedy 策略选择动作
stateInput = imresize(state,[1 1 inputSize]);
action = predict(dqn,stateInput);
[~,action] = max(action);
% 执行动作并观察新状态和奖励
[nextState,reward,done,~] = step(env,action);
totalReward = totalReward + reward;
% 更新状态
state = nextState;
% 如果游戏结束,跳出循环
if done
break
end
end
%% 输出总奖励
disp(['Total reward: ' num2str(totalReward)]);
```
请注意,这只是一个简单的示例代码,可能需要根据实际情况进行修改和优化。
阅读全文