用matlab实现LM算法
时间: 2023-10-13 13:57:17 浏览: 110
LM算法.zip_LM_lm 算法_lm算法_lm算法程序_matlab lm算法
5星 · 资源好评率100%
LM算法是Levenberg-Marquardt算法的简称,它是一种用于非线性最小二乘问题的优化算法。如果你想在Matlab中实现LM算法,你可以参考以下步骤:
1. 首先,你可以使用Cholesky分解来求解对称正定矩阵Ax=b的方程。你可以使用下面的Matlab代码实现Cholesky分解:
```matlab
function \[x,L\]=cholesky(A,b)
\[m,n\]=size(A);
if m~=n
fprintf('Matrix is not a square matrix');
return;
end
for k=1:n
A(k,k)=sqrt(A(k,k));
A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n
A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k);
end
end
L = tril(A);
```
2. 接下来,你可以使用LM算法来优化非线性最小二乘问题。你可以参考一些相关的理论和推导,例如在K. Madsen等人的《Methods for non-linear least squares problems》文章中。你可以在这篇文章的原文链接中找到更多详细的信息:\[3\]
请注意,这里只提供了一个简单的实现示例,你可能需要根据你的具体问题进行适当的修改和调整。希望这些信息对你有帮助!
#### 引用[.reference_title]
- *1* *3* [LM优化算法的Matlab实现](https://blog.csdn.net/lingyunxianhe/article/details/80469984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [LM(Levenberg-Marquadrdt )算法在MATLAB中的实现及实例](https://blog.csdn.net/waitingwinter/article/details/106142276)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文