现有5个矩阵A1,A2,A3,A4,A5,其行列值分别是:{2*3,3*2,2*4,4*2,2*3}则A1*A2*A3*A4*A5矩阵连乘的最小乘次数是:____。

时间: 2024-04-23 20:20:07 浏览: 27
根据矩阵连乘的最优化原理,可以使用动态规划算法来求解矩阵连乘的最小乘次数。假设矩阵Ai的行列值为ri*ci,其中1≤i≤5。 首先,定义一个二维数组dp[5],其中dp[i][j]表示从矩阵Ai到Aj的最小乘次数。初始化时,将dp[i][i]设置为0,表示单个矩阵相乘的次数为0。 然后,使用一个循环遍历矩阵链的长度l,从2开始逐渐增加,直到遍历完整个矩阵链。在每个长度l下,再使用一个循环遍历矩阵链的起始位置i,从1开始逐渐增加,直到遍历完整个矩阵链。 在每个长度l和起始位置i下,计算dp[i][i+l-1]的值。具体计算方法如下: - 首先,将dp[i][i+l-1]初始化为一个较大的值,比如无穷大。 - 然后,使用一个循环遍历中间位置k,从i开始逐渐增加,直到i+l-2。在每个中间位置k下,计算当前的乘次数count = dp[i][k] + dp[k+1][i+l-1] + ri*ck*r(i+l-1)。 - 如果count小于dp[i][i+l-1],则更新dp[i][i+l-1]的值为count。 最后,dp即为矩阵连乘的最小乘次数。 根据题目给出的矩阵行列值,可以计算出最小乘次数为: dp = dp + dp + 2*2*3 = 0 + 0 + 12 = 12 所以,A1*A2*A3*A4*A5矩阵连乘的最小乘次数是12。
相关问题

给定5个矩阵,维度分别为\n\na1:20*25,a2:25*5,a3:5*15,a4:15*10,a5:10*30\n\n用动态规划求解该矩阵连乘问题的最小计算量。

### 回答1: 题目描述:给定5个矩阵,维度分别为a1:20x25,a2:25x5,a3:5x15,a4:15x10,a5:10x30,用动态规划求解该矩阵连乘问题的最小计算量。 答案:这是一道动态规划的题目,解决矩阵连乘问题。使用动态规划中的记忆化搜索,维护一个矩阵q[i][j],表示从第i个矩阵乘到第j个矩阵的最小计算量。然后通过递归计算子问题来更新q[i][j],最终得到q[1][5],即为该问题的最小计算量。 ### 回答2: 矩阵连乘问题是一个经典的动态规划问题。给定5个矩阵,维度分别为a1:20*25,a2:25*5,a3:5*15,a4:15*10,a5:10*30,要求计算它们相乘的最小计算量。 首先需要明确,矩阵相乘的计算量是由两个矩阵的行数、列数以及它们相乘的列数决定的。因此,对于给定的这5个矩阵,可以表示为A1A2A3A4A5。 假设最优计算次序为(A1A2)(A3A4)A5,那么计算量为: (20 * 25 * 5) + (5 * 15 * 10) + (20 * 10 * 30) 即第一个括号中的矩阵乘积需要计算20*5*25=2500次乘法和2500次加法,第二个括号中的矩阵乘积需要计算5*10*15=750次乘法和750次加法,最后一个矩阵乘积需要计算20*10*30=6000次乘法和6000次加法。 为了方便计算最小计算量,以及推导出最优计算次序,可以借助一个二维数组m[i][j]来存储子问题AiAi+1...Aj的最小计算数。m[i][j]的值可以通过以下方式递归计算: m[i][j] = min{m[i][k] + m[k+1][j] + p(i-1)p(k)p(j)},其中i<=k<j,p(i)表示矩阵Ai的行数,p(j)表示矩阵Aj的列数。 这个递归式的意义是,假设将AiAi+1...Aj划分为两部分,即AiAi+1...Ak和Ak+1Ak+2...Aj。那么这两个部分的最小计算量可以分别递归计算出来,并加上它们相乘的计算量,就是AiAi+1...Aj的最小计算量。需要枚举k的位置,取其中最小的计算量。 为了求解m[i][j],需要按照矩阵乘积链的长度从小到大依次计算出每一个m[i][j]的值,因为每个m[i][j]的值都依赖于之前已经计算了的m[i][k]和m[k+1][j]。最终答案就是m[1][5],即A1A2A3A4A5的最小计算量。 具体地: 当链长为1时,m[i][i]=0。 当链长为2时,m[i][i+1]=p(i-1)p(i)p(i+1)(i为链的起点)。 当链长l>=3时,求解顺序应为从链长小到大(即从左到右、从下到上)。 计算m[i][j]的顺序为: 对于每个i,从小到大枚举l,计算出m[i][i+l-1],直到i+l-1=n。 在计算m[i][j]时,需要先得到m[i][k]和m[k+1][j]的值,对应的p(i-1)p(k)p(j)是固定的。在枚举k的位置时,可以尝试优化,减少不必要的计算。 最后,m[1][5]就是整个问题的最小计算量,即 m[1][5] = min{m[1][2] + m[3][5] + p(0)p(2)p(5),m[1][3] + m[4][5] + p(0)p(3)p(5),m[1][4] + m[5][5] + p(0)p(4)p(5)}。 取其中的最小值即可。 这个算法的时间复杂度为O(n^3),其中n是矩阵的个数。因此,这种算法对于较小规模的问题有较好的求解效率。 ### 回答3: 矩阵连乘问题是计算多个矩阵相乘的最优计算顺序问题,也就是选择哪个先计算,哪个后计算,从而使得总计算次数最少。 已知五个矩阵,分别为a1、a2、a3、a4、a5,维度分别为20*25、25*5、5*15、15*10、10*30,要求求解这些矩阵相乘的最优计算顺序,从而最小化计算量。 解决这个问题可以使用动态规划算法,步骤如下: 1. 定义状态 在动态规划中,需要定义状态,这里定义状态为d[i][j],表示第i个矩阵到第j个矩阵相乘的最小计算量。 2. 初始化 矩阵连乘的长度往往小于5,因此可以先将长度小于5的所有情况求出来,并将其初始化为0。 3. 转移方程 通过状态转移方程,将未知的d[i][j]求解出来。具体方程如下: d[i][j] = min{d[i][k] + d[k+1][j] + p[i-1]*p[k]*p[j]}, i<=k<j 其中p[i-1]表示第i-1个矩阵的行数,p[k]表示第k个矩阵的列数,p[j]表示第j个矩阵的列数。 4. 解决问题 最终解为d[1][5]的值,即将所有矩阵相乘的最小计算量。 在本题中,共有5个矩阵,因此可以使用动态规划的方式求解: 1. 初始化d[i][j]为0,当i=j时,d[i][j]=0,i<j<=n。 2. 计算长度为2的最小计算量,即将相邻的两个矩阵相乘的最小计算量,d[1][2]=20*5*15=1500,d[2][3]=5*15*10=750,d[3][4]=15*10*30=4500,d[4][5]=10*30*25=7500。 3. 计算长度为3的最小计算量,即将三个相邻的矩阵相乘的最小计算量,d[1][3]=d[1][2]+d[3][3]+p[0]*p[2]*p[3]=1500+0+20*15*10=4500,d[2][4]=d[2][2]+d[3][4]+p[1]p[3]*p[4]=0+750+5*10*30=2250,d[3][5]=d[3][3]+d[4][5]+p[2]*p[4]*p[5]=0+7500+15*30*25=14250。 4. 计算长度为4的最小计算量,d[1][4]=min{d[1][2]+d[3][4]+p[0]*p[2]*p[4],d[1][3]+d[4][4]+p[0]*p[3]*p[4]}=min{1500+2250+20*15*30,4500+0+20*10*30}=10500,d[2][5]=min{d[2][3]+d[4][5]+p[1]*p[3]*p[5],d[2][4]+d[3][5]+p[1]*p[4]*p[5]}=min{750+7500+5*10*25,2250+14250+5*30*25}=8250。 5. 计算长度为5的最小计算量,d[1][5]=min{d[1][4]+d[5][5]+p[0]*p[4]*p[5],d[1][3]+d[4][5]+p[0]*p[3]*p[5],d[1][2]+d[3][5]+p[0]*p[2]*p[5]}=min{10500+0+20*30*25,4500+7500+20*10*25,1500+14250+20*15*25}=77750。 因此,将这五个矩阵按照计算量最小的方式相乘,总计算量最小为77750。

6个矩阵连乘积A=A1×A2×A3×A4×A5×A6,各矩阵的维数分别为:A1:10×20,A2:20×25,A3:25×15,A4:15×5,A5:5×10,A6:10×25。完成测试。

### 回答1: 根据矩阵连乘积的结合律,我们可以任意调整矩阵的乘法顺序,以使得乘法次数最小。 首先考虑A1和A2两个矩阵的乘法,得到一个10×25的矩阵,乘法次数为10×20×25=5000。 然后考虑A3和上一步得到的结果的乘法,得到一个10×15的矩阵,乘法次数为10×25×15=3750。 接下来考虑A4和上一步得到的结果的乘法,得到一个10×5的矩阵,乘法次数为10×15×5=750。 然后考虑A5和上一步得到的结果的乘法,得到一个5×25的矩阵,乘法次数为5×10×25=1250。 最后考虑A6和上一步得到的结果的乘法,得到一个10×25的矩阵,乘法次数为10×5×25=1250。 因此,总乘法次数为5000+3750+750+1250+1250=12000。 因此,完成测试。 ### 回答2: 对于矩阵连乘积A=A1×A2×A3×A4×A5×A6,我们可以按照以下步骤进行计算: 1. 首先需要确保相邻矩阵的列数和行数匹配。从给出的维数中可以看出,A1的列数是20,与A2的行数相匹配;A2的列数是25,与A3的行数相匹配;A3的列数是15,与A4的行数相匹配;A4的列数是5,与A5的行数相匹配;A5的列数是10,与A6的行数相匹配。因此,这些矩阵是可以相乘的。 2. 接下来,我们根据矩阵乘法的规则,将相邻的两个矩阵相乘,得到新的矩阵。首先计算A1×A2,得到一个10×25的矩阵B;然后计算B×A3,得到一个10×15的矩阵C;接着计算C×A4,得到一个10×5的矩阵D;再计算D×A5,得到一个10×10的矩阵E;最后计算E×A6,得到一个10×25的矩阵A。 3. 经过以上步骤,我们得到了最终的矩阵A,其维数是10×25。这就完成了对矩阵连乘积A的计算。 需要注意的是,矩阵连乘积的计算涉及到多次矩阵相乘的运算,不同的矩阵相乘的顺序会得到不同的结果。因此,在实际计算中,我们可以根据具体的应用场景和需求来决定矩阵相乘的顺序,以获得最好的性能和准确性。 ### 回答3: 首先,我们需要知道矩阵连乘的计算规则。两个矩阵相乘的要求是前一个矩阵的列数与后一个矩阵的行数相等,乘积的结果将是一个新的矩阵,其行数等于前一个矩阵的行数,列数等于后一个矩阵的列数。 根据这个规则,我们可以计算出连乘积的维数。首先,将A1与A2相乘,得到一个10×25的矩阵;然后,将该矩阵与A3相乘,得到一个10×15的矩阵;再将该矩阵与A4相乘,得到一个10×5的矩阵;再将该矩阵与A5相乘,得到一个10×10的矩阵;最后,将该矩阵与A6相乘,得到一个10×25的矩阵。 综上所述,矩阵连乘积A的维数为10×25。 在计算矩阵连乘积时,为了保持矩阵乘法的结合律,我们需要按照一定的顺序进行乘法运算。例如,在本题中,可以按照以下顺序进行乘法运算:(A1×(A2×(A3×(A4×(A5×A6)))))。 最后,可以通过利用动态规划的方法来计算矩阵连乘积的最优乘法顺序和乘法次数。具体方法是通过构建一个二维数组来记录每一种乘法顺序的计算次数,并根据次数进行比较和求解最优解。 希望以上回答可以帮助到您。

相关推荐

最新推荐

recommend-type

地县级城市建设2022-2002 -市级预算资金-国有土地使用权出让收入 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

银行家算法:守护系统安全稳定的关键技术.pdf

在多道程序环境中,进程间的资源争夺可能导致死锁现象的发生,从而影响系统的正常运行。银行家算法是一种基于资源分配和请求的算法,用于避免死锁的发生。通过模拟银行家的贷款操作,该算法确保系统在任何时候都不会进入不安全状态,从而避免死lock的发生。 二、银行家算法的基本概念 系统状态:系统状态包括当前可用的资源数量、每个进程所拥有的资源数量以及每个进程所申请的资源数量。 安全状态:如果存在一个进程序列,使得按照该序列执行每个进程的资源请求都不会导致死锁,那么系统处于安全状态。 不安全状态:如果不存在这样的进程序列,那么系统处于不安全状态,死锁可能会发生。
recommend-type

一款易语言写的XP模拟器

一款易语言写的XP模拟器
recommend-type

RTL8822BU Wireless Driver for Linux.zip

Linux是一套免费使用和自由传播的类Unix操作系统,由林纳斯·托瓦兹于1991年首次发布。 Linux不仅是一个强大的操作系统,也是一个庞大的技术生态系统,涵盖了从服务器到个人电脑的各种应用场景。同时,它的开源特性和广泛的社区支持使其成为技术发展的重要推动力。在了解Linux的过程中,人们不仅能够看到其强大的技术基础和广泛的应用领域,还能体会到它作为开源先锋在全球科技发展中的重要地位。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依