如何将Keras训练的YOLOv3.h5模型文件转换为Darknet框架所需的.weights文件格式?
时间: 2024-11-08 10:24:42 浏览: 24
当需要在不同的深度学习框架之间迁移模型时,例如将Keras训练好的YOLOv3模型转换为Darknet框架的.weights格式,可以利用提供的转换工具'《Darknet框架YOLOv3权重转换教程:h5转weights》'。该工具包含详细的步骤和代码逻辑,能够处理模型结构和权重数据的解析以及格式转换。首先,确保安装了必要的依赖库,如Keras和NumPy。接着,使用提供的Python脚本读取.h5文件,解析模型信息,并按照Darknet的要求重新组织权重数据。最终生成.weights文件,该文件可在Darknet框架中使用。在转换过程中,需注意数据类型和格式的兼容性问题,确保转换后的文件能够被Darknet框架正确加载。具体操作步骤包括:使用Python脚本读取.h5文件,解析出模型的层次结构和权重,根据Darknet框架要求对权重数据进行格式化,最后生成.weights文件。为了深入理解和掌握这一转换过程,建议详细阅读《Darknet框架YOLOv3权重转换教程:h5转weights》,这本教程详细介绍了转换的每个步骤和可能遇到的问题,帮助你在模型迁移和部署方面取得成功。
参考资源链接:[Darknet框架YOLOv3权重转换教程:h5转weights](https://wenku.csdn.net/doc/4ik2hu34fq?spm=1055.2569.3001.10343)
相关问题
把 yolov3.weights 文件转换成 keras 适用的 h5 文件
要将 YOLOv3 的权重文件转换为 Keras 可以使用的 .h5 文件,需要进行以下步骤:
1. 下载并安装 `keras` 和 `tensorflow` 库:
```
pip install keras tensorflow
```
2. 下载 YOLOv3 的权重文件 `yolov3.weights` 和配置文件 `yolov3.cfg`。
3. 使用 `yolo_weights_convert.py` 脚本将权重文件转换为 Keras 模型:
```
python yolo_weights_convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
```
其中,`yolov3.cfg` 是 YOLOv3 的配置文件路径,`yolov3.weights` 是权重文件路径,`model_data/yolo.h5` 是转换后的 Keras 模型保存路径。
以下是 `yolo_weights_convert.py` 的代码:
```python
import argparse
import numpy as np
import struct
import os
from keras.layers import Conv2D, Input, ZeroPadding2D, BatchNormalization, LeakyReLU, UpSampling2D
from keras.layers.merge import add, concatenate
from keras.models import Model
from keras.engine.topology import Layer
from keras import backend as K
class YoloLayer(Layer):
def __init__(self, anchors, max_grid, batch_size, warmup_batches, ignore_thresh, grid_scale,
obj_scale, noobj_scale, xywh_scale, class_scale, **kwargs):
self.ignore_thresh = ignore_thresh
self.warmup_batches = warmup_batches
self.anchors = anchors
self.grid_scale = grid_scale
self.obj_scale = obj_scale
self.noobj_scale = noobj_scale
self.xywh_scale = xywh_scale
self.class_scale = class_scale
self.batch_size = batch_size
self.true_boxes = K.placeholder(shape=(self.batch_size, 1, 1, 1, 50, 4))
super(YoloLayer, self).__init__(**kwargs)
def build(self, input_shape):
super(YoloLayer, self).build(input_shape)
def get_grid_size(self, net_h, net_w):
return net_h // 32, net_w // 32
def call(self, x):
input_image, y_pred, y_true = x
self.net_h, self.net_w = input_image.shape.as_list()[1:3]
self.grid_h, self.grid_w = self.get_grid_size(self.net_h, self.net_w)
# adjust the shape of the y_predict [batch, grid_h, grid_w, 3, 4+1+80]
y_pred = K.reshape(y_pred, (self.batch_size, self.grid_h, self.grid_w, 3, 4 + 1 + 80))
# convert the coordinates to absolute coordinates
box_xy = K.sigmoid(y_pred[..., :2])
box_wh = K.exp(y_pred[..., 2:4])
box_confidence = K.sigmoid(y_pred[..., 4:5])
box_class_probs = K.softmax(y_pred[..., 5:])
# adjust the shape of the y_true [batch, 50, 4+1]
object_mask = y_true[..., 4:5]
true_class_probs = y_true[..., 5:]
# true_boxes[..., 0:2] = center, true_boxes[..., 2:4] = wh
true_boxes = self.true_boxes[..., 0:4] # shape=[batch, 50, 4]
true_xy = true_boxes[..., 0:2] * [self.grid_w, self.grid_h] # shape=[batch, 50, 2]
true_wh = true_boxes[..., 2:4] * [self.net_w, self.net_h] # shape=[batch, 50, 2]
true_wh_half = true_wh / 2.
true_mins = true_xy - true_wh_half
true_maxes = true_xy + true_wh_half
# calculate the Intersection Over Union (IOU)
pred_xy = K.expand_dims(box_xy, 4)
pred_wh = K.expand_dims(box_wh, 4)
pred_wh_half = pred_wh / 2.
pred_mins = pred_xy - pred_wh_half
pred_maxes = pred_xy + pred_wh_half
intersect_mins = K.maximum(pred_mins, true_mins)
intersect_maxes = K.minimum(pred_maxes, true_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
true_areas = true_wh[..., 0] * true_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = intersect_areas / union_areas
# calculate the best IOU, set the object mask and update the class probabilities
best_ious = K.max(iou_scores, axis=4)
object_mask_bool = K.cast(best_ious >= self.ignore_thresh, K.dtype(best_ious))
no_object_mask_bool = 1 - object_mask_bool
no_object_loss = no_object_mask_bool * box_confidence
no_object_loss = self.noobj_scale * K.mean(no_object_loss)
true_box_class = true_class_probs * object_mask
true_box_confidence = object_mask
true_box_xy = true_boxes[..., 0:2] * [self.grid_w, self.grid_h] - pred_mins
true_box_wh = K.log(true_boxes[..., 2:4] * [self.net_w, self.net_h] / pred_wh)
true_box_wh = K.switch(object_mask, true_box_wh, K.zeros_like(true_box_wh)) # avoid log(0)=-inf
true_box_xy = K.switch(object_mask, true_box_xy, K.zeros_like(true_box_xy)) # avoid log(0)=-inf
box_loss_scale = 2 - true_boxes[..., 2:3] * true_boxes[..., 3:4]
xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(true_box_xy, box_xy)
wh_loss = object_mask * box_loss_scale * 0.5 * K.square(true_box_wh - box_wh)
confidence_loss = true_box_confidence * K.binary_crossentropy(box_confidence, true_box_confidence) \
+ (1 - true_box_confidence) * K.binary_crossentropy(box_confidence, true_box_confidence) \
* no_object_mask_bool
class_loss = object_mask * K.binary_crossentropy(true_box_class, box_class_probs)
xy_loss = K.mean(K.sum(xy_loss, axis=[1, 2, 3, 4]))
wh_loss = K.mean(K.sum(wh_loss, axis=[1, 2, 3, 4]))
confidence_loss = K.mean(K.sum(confidence_loss, axis=[1, 2, 3, 4]))
class_loss = K.mean(K.sum(class_loss, axis=[1, 2, 3, 4]))
loss = self.grid_scale * (xy_loss + wh_loss) + confidence_loss * self.obj_scale + no_object_loss \
+ class_loss * self.class_scale
# warm up training
batch_no = K.cast(self.batch_size / 2, dtype=K.dtype(object_mask))
warmup_steps = self.warmup_batches
warmup_lr = batch_no / warmup_steps
batch_no = K.cast(K.minimum(warmup_steps, batch_no), dtype=K.dtype(object_mask))
lr = self.batch_size / (batch_no * warmup_steps)
warmup_decay = (1 - batch_no / warmup_steps) ** 4
lr = lr * (1 - warmup_decay) + warmup_lr * warmup_decay
self.add_loss(loss)
self.add_metric(loss, name='loss', aggregation='mean')
self.add_metric(xy_loss, name='xy_loss', aggregation='mean')
self.add_metric(wh_loss, name='wh_loss', aggregation='mean')
self.add_metric(confidence_loss, name='confidence_loss', aggregation='mean')
self.add_metric(class_loss, name='class_loss', aggregation='mean')
self.add_metric(lr, name='lr', aggregation='mean')
return y_pred
def compute_output_shape(self, input_shape):
return input_shape[1]
def get_config(self):
config = {
'ignore_thresh': self.ignore_thresh,
'warmup_batches': self.warmup_batches,
'anchors': self.anchors,
'grid_scale': self.grid_scale,
'obj_scale': self.obj_scale,
'noobj_scale': self.noobj_scale,
'xywh_scale': self.xywh_scale,
'class_scale': self.class_scale
}
base_config = super(YoloLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def _conv_block(inp, convs, skip=True):
x = inp
count = 0
for conv in convs:
if count == (len(convs) - 2) and skip:
skip_connection = x
count += 1
if conv['stride'] > 1:
x = ZeroPadding2D(((1, 0), (1, 0)))(x) # unlike tensorflow darknet prefer left and top paddings
x = Conv2D(conv['filter'],
conv['kernel'],
strides=conv['stride'],
padding='valid' if conv['stride'] > 1 else 'same', # unlike tensorflow darknet prefer left and top paddings
name='conv_' + str(conv['layer_idx']),
use_bias=False if conv['bnorm'] else True)(x)
if conv['bnorm']:
x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
if conv['leaky']:
x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
return add([skip_connection, x]) if skip else x
def make_yolov3_model():
input_image = Input(shape=(None, None, 3))
true_boxes = Input(shape=(1, 1, 1, 50, 4))
# Layer 0 => 4
x = _conv_block(input_image, [{'filter': 32, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 64, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True},
{'filter': 32, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 64, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 5 => 8
x = _conv_block(x, [{'filter': 128, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True},
{'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 9 => 11
x = _conv_block(x, [{'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 12 => 15
x = _conv_block(x, [{'filter': 256, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True},
{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 16 => 36
for i in range(7):
x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
skip_36 = x
# Layer 37 => 40
x = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 41 => 61
for i in range(7):
x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
skip_61 = x
# Layer 62 => 65
x = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 66 => 74
for i in range(3):
x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 75 => 79
x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True}])
# Layer 80 => 82
yolo_82 = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False}], skip=False)
# Layer 83 => 86
x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True}],
skip=False)
x = UpSampling2D(2)(x)
x = concatenate([x, skip_61])
# Layer 87 => 91
x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True}], skip=False)
# Layer 92 => 94
yolo_94 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False}],
skip=False)
# Layer 95 => 98
x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True}],
skip=False)
x = UpSampling2D(2)(x)
x = concatenate([x, skip_36])
# Layer 99 => 106
yolo_106 = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True},
{'filter
阅读全文