c++ a星游戏寻路
时间: 2024-01-19 19:01:03 浏览: 126
C A星游戏寻路是一种常用的路径规划算法,它可以用于游戏中的AI行为设计、地图导航等场景。该算法基于图论思想,通过建立一个二维的离散地图来表示游戏场景。
在C A星游戏寻路中,寻路的过程可以概括为以下几个步骤:首先,需要初始化起点和终点的坐标,以及每个格子的权重(例如墙壁、障碍物等)。然后,选取一个合适的启发式函数来评估每个格子的价值,以确定最佳的路径。
之后,通过广度优先搜索的方式,不断地将格子加入到开放列表中,并计算出每个格子的估计成本。在计算成本时,需要考虑到从起点到当前格子的实际代价(也就是G值)以及当前格子到终点的预估成本(也就是H值)。通过将G值和H值相加,得到每个格子的F值。
接下来,在开放列表中选择F值最小的格子作为当前位置,然后将其从开放列表中移除并加入到关闭列表中。然后,将与当前格子相邻的格子加入到开放列表中,并更新它们的估计成本。
重复上述步骤,直到找到终点或者开放列表为空。如果找到终点,则可以根据格子的父节点指针,回溯得到具体的路径。
C A星游戏寻路算法的优点是在保证最优路径的同时,相对于其他算法具有较快的计算速度。它能够避免对整个地图的完全搜索,而且适用于不同的地形以及动态的环境。
总而言之,C A星游戏寻路是一种高效且常用的路径规划算法,可以在游戏中实现AI行为设计和地图导航等功能。它通过搜索、评估和选择的方式,找到起点到终点的最佳路径,为游戏增加了更多的策略性和趣味性。
相关问题
C++A星寻路代码
以下是一个简单的C++ A星寻路代码实现:
```cpp
#include <iostream>
#include <queue>
#include <vector>
#include <cmath>
using namespace std;
const int INF = 1e9; // 无穷大
const int MAXN = 1005; // 最大节点数
struct Node {
int x, y; // 坐标
int g, h; // 距离起点的代价g和距离终点的代价h
int f() const { // 总代价f
return g + h;
}
};
int n, m; // 地图大小
char map[MAXN][MAXN]; // 地图
Node start, end; // 起点和终点
int vis[MAXN][MAXN]; // 是否访问过
// 估算距离函数,这里取曼哈顿距离
int estimate(int x1, int y1, int x2, int y2) {
return abs(x1 - x2) + abs(y1 - y2);
}
// A*搜索函数
int astar() {
priority_queue<pair<int, Node>> Q; // 优先队列
Q.push(make_pair(0, start));
while (!Q.empty()) {
Node u = Q.top().second;
Q.pop();
if (u.x == end.x && u.y == end.y) { // 找到终点
return u.g;
}
if (vis[u.x][u.y]) { // 已经访问过,跳过
continue;
}
vis[u.x][u.y] = 1; // 标记为已访问
// 枚举相邻节点
for (int dx = -1; dx <= 1; dx++) {
for (int dy = -1; dy <= 1; dy++) {
if (dx == 0 && dy == 0) {
continue;
}
int nx = u.x + dx, ny = u.y + dy;
if (nx < 0 || nx >= n || ny < 0 || ny >= m) {
continue; // 超出边界
}
if (map[nx][ny] == '#') {
continue; // 障碍物
}
Node v = {nx, ny, u.g + 1, estimate(nx, ny, end.x, end.y)};
Q.push(make_pair(-v.f(), v)); // 插入队列,优先级为f的相反数
}
}
}
return -1; // 没有找到路径
}
int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {
cin >> map[i];
for (int j = 0; j < m; j++) {
if (map[i][j] == 'S') {
start = {i, j, 0, 0};
}
if (map[i][j] == 'E') {
end = {i, j, 0, 0};
}
}
}
int ans = astar();
if (ans == -1) {
cout << "No path found." << endl;
} else {
cout << "The shortest path is " << ans << "." << endl;
}
return 0;
}
```
该代码实现了一个简单的A星寻路算法,包括估算距离函数、A星搜索函数和主函数。其中使用了STL的priority_queue来实现优先队列。
编写一个C++ 战棋A星寻路算法
好的,我了解了你的要求,并且明白你的问题。以下是关于编写C语言中的A星寻路算法的基本介绍:
A星算法是一种基于权重的最短路径优先算法,用于寻找从起点到目标节点的最短路径。该算法将节点排列成一个网格图,并采用估价函数(曼哈顿距离或欧几里得距离)来计算每个节点到目标节点的距离。然后,从起点开始,计算每个相邻节点的总成本,并选择具有最低成本的节点进行遍历。最后,重复该过程,直到到达目标节点。
为了编写C语言中的A星寻路算法,需要完成以下步骤:
1. 设计程序接口和数据结构,如节点、地图和路径。
2. 编写算法函数,计算每个节点到目标节点的距离,并选择最佳路径。
3. 编写程序主函数,实现对输入数据的读取和对算法函数的调用。
以下是一个示例程序的代码,该程序实现了A星寻路算法:
```C
#include<stdio.h>
#include<stdlib.h>
#define MAX 100
#define WALL 1
#define EMPTY 0
#define PATH 2
#define GOAL 3
#define START 4
#define M 10
#define N 10
typedef struct _NODE {
int x, y;
int f, g, h;
struct _NODE *parent;
} NODE;
int maze[M][N] = {
{ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 },
{ 0, 0, 0, 0, 1, 1, 0, 1, 1, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
{ 0, 0, 1, 1, 1, 1, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
NODE *open_list[MAX], *closed_list[MAX];
NODE start = {0, 0, 0, 0, 0, NULL};
NODE goal = {9, 9, 0, 0, 0, NULL};
int open_count = 0;
int closed_count = 0;
NODE *find_node_on_list(NODE **list, NODE *node)
{
int i;
for(i = 0; list[i] != NULL; i++)
if(list[i]->x == node->x && list[i]->y == node->y) return list[i];
return NULL;
}
void remove_node_from_list(NODE **list, NODE *node)
{
int i;
for(i = 0; list[i] != NULL; i++) {
if(list[i] == node) {
list[i] = NULL;
return;
}
}
}
int compare_nodes(NODE *node1, NODE *node2) {
if(node1->f < node2->f) return 1; //node1的f小,说明node1的总成本更小
if(node1->f > node2->f) return -1; //node2的f小,说明node2的总成本更小
return 0;
}
void insert_node_to_list(NODE **list, NODE *node)
{
int i;
for(i = 0; list[i] != NULL && compare_nodes(node, list[i]) > 0; i++);
for(int j = MAX-2; j-i >= 0; j--) list[j+1] = list[j];
list[i] = node;
}
int manhattan_distance(NODE *node1, NODE *node2)
{
return abs(node1->x - node2->x) + abs(node1->y - node2->y);
}
void set_start_and_goal(int sx, int sy, int gx, int gy)
{
start.x = sx; start.y = sy;
goal.x = gx; goal.y = gy;
}
NODE *find_path()
{
NODE *current;
start.g = 0;
start.h = manhattan_distance(&start, &goal);
start.f = start.g + start.h;
insert_node_to_list(open_list, &start);
while(open_list[0] != NULL) {
current = open_list[0];
if(current->x == goal.x && current->y == goal.y) return current;
remove_node_from_list(open_list, current);
insert_node_to_list(closed_list, current);
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
if(i == 0 && j == 0) continue;
if(current->x+i < 0 || current->x+i >= M || current->y+j < 0 || current->y+j >= N) continue;
if(maze[current->x+i][current->y+j] == WALL) continue;
NODE *n = (NODE*)malloc(sizeof(NODE));
n->x = current->x + i;
n->y = current->y + j;
n->parent = current;
n->g = current->g + 1;
n->h = manhattan_distance(n, &goal);
n->f = n->g + n->h;
if(find_node_on_list(closed_list, n)) continue;
NODE *opened = find_node_on_list(open_list, n);
if(!opened) insert_node_to_list(open_list, n);
else if(n->g < opened->g) {
opened->g = n->g;
opened->parent = current;
}
}
}
}
return NULL;
}
void print_path(NODE *node) {
if(node == NULL) {
printf("Cannot find path.\n");
return;
}
int path_length = 0;
while(node->parent != NULL) {
maze[node->x][node->y] = PATH;
node = node->parent;
path_length++;
}
maze[start.x][start.y] = START;
maze[goal.x][goal.y] = GOAL;
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
if (maze[i][j] == WALL) {
printf("# ");
} else if (maze[i][j] == EMPTY) {
printf(". ");
} else if (maze[i][j] == PATH) {
printf("* ");
} else if (maze[i][j] == START) {
printf("S ");
} else if (maze[i][j] == GOAL){
printf("G ");
}
}
printf("\n");
}
printf("\nPath length: %d", path_length);
}
int main()
{
set_start_and_goal(0, 0, 9, 9);
NODE *goal_node = find_path();
print_path(goal_node);
return 0;
}
```
该程序能够自动解决在一个10*10的网格中的起点和终点之间的最短路径问题。
以上就是这个问题的回答。希望可以帮助到你!
阅读全文